Its B. Hope this helped :) ♥♥
Answer:
c
Explanation:
It light wave will travel at speed of light and go faster in its wavelength
Answer:
7808 m/s
Explanation:
Find NE velocity after 60 s of acceleration in that direction:
= a t = 28.4 m/s^2 * 60 s = 1704 m/s
Vertical component = 1704 sin 45 = 1204.9 m/s
Horiz component = 1704 cos 45 = 1204.9 m/s
Add the two vertical components
6510 + 1204.9 = 7714.9 m/s = vertical velocity
Pythagorean theorem to find resultant of vertical and horiz v's
Vf ^2 = 1204.9^2 + 7714.9^2 0
Vf = 7808. m/s
Let N be the normal force that forces the person against the wall.
Then u N = m g is the frictional force supporting the person's weight
and N = m g / u
also, N = m v^2 / R is the normal force providing the centripetal acceleration
So, m g / u = m v^2 / R
v^2 = g R / u
since v = 2 pi R T
4 pi^2 R^2 T^2 = g R / u and T^2 = g / (4 u pi^2 R)
T = 1/ (2 pi) (g /(u R))^1/2 = .159 * (9.8 m/s^2 / (.521 * 4.4 m)) ^1/2
T = .68 / s
Do you see any thing wrong here?
T should have units of seconds not 1 / seconds
v should be 2 * pi * R / T where T is the time for 1 revolution
So you need to make that correction in the above formula for v.
Newton's second law of motion:
F=ma

You convert from km/h to m/s by dividing by 3.6:


Then a is:


Then:
F=(980)(2.8)=2744 N