Answer:
to overcome the out of friction we must increase the angle of the plane
Explanation:
To answer this exercise, let's propose the solution of the problem, write Newton's second law. We define a coordinate system where the x axis is parallel to the plane and the other axis is perpendicular to the plane.
X axis
fr - Wₓ = m a (1)
Y axis
N-
= 0
N = W_{y}
let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
the friction force has the formula
fr = μ N
fr = μ Wy
fr = μ mg cos θ
from equation 1
at the point where the force equals the maximum friction force
in this case the block is still still so a = 0
F = fr
F = (μ mg) cos θ
We can see that the quantities in parentheses with constants, so as the angle increases, the applied force must be less.
This is the force that balances the friction force, any force slightly greater than F initiates the movement.
Consequently, to overcome the out of friction we must increase the angle of the plane
the correct answer is to increase the angle of the plane
Answer:
The answer of this is question is A.
Answer:
a)-1.014x
J
b)3.296 x
J
Explanation:
For Sphere A:
mass 'Ma'= 47kg
xa= 0
For sphere B:
mass 'Mb'= 110kg
xb=3.4m
a)the gravitational potential energy is given by
= -GMaMb/ d
= - 6.67 x
x 47 x 110/ 3.4 => -1.014x
J
b) at d= 0.8m (3.4-2.6) and
=-1.014x
J
The sum of potential and kinetic energies must be conserved as the energy is conserved.
+
=
+ 
As sphere starts from rest and sphere A is fixed at its place, therefore
is zero
=
+ 
The final potential energy is
= - GMaMb/d
Solving for '
'
=
+ GMaMb/d => -1.014x
+ 6.67 x
x 47 x 110/ 0.8
= 3.296 x
J
Answer:
5 hours
Explanation:
formula is 6 km per hour
if you have to travel 30 km, divide 30 by 6
30/6 = 5 hours
Answer:
<u>Charge</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>particle</u><u> </u><u>is</u><u> </u><u>1</u><u> </u><u>coulomb</u><u>.</u>
Explanation:
Force, F:

F is magnetic force.
B is the magnetic flux density.
e is the charge of the particle.
V is the velocity
