Answer: 7840N
Explanation:
Given that
Potential energy = ?
Mass of sled = 20-kg
Distance = 40 meters
Acceleration due to gravity = 9.8m/s^2
Recall that potential energy is the energy possessed by a body at rest
i.e potential energy = mass m x acceleration due to gravity g x distance h
P.E = mgh
P.E = 20kg x 9.8m/s^2 x 40m
P.E = 7840N
Thus, the potential energy of the sled is 7840N
I believe the correct answer from the choices listed above is option C. The instrument that is <span>best suited for measuring the dimensions of a shoebox would be a ruler. A triple-beam balance is for measuring mass. A volumetric flask is for volume. A caliper is measuring lengths of small objects.</span>
The formula we can use in
this case would be:
v = sqrt (T / (m / l))
Where,
v = is the velocity of the
transverse wave = unknown (?)
T = is the tension on the
rope = 500 N
m = is the mass of the
rope = 60.0 g = 0.06 kg
l = is the
length of the rope = 2.00 m
Substituting the given values into the equation to search
for the speed v:
v = sqrt (500 N/(0.06 kg /2 m))
v = sqrt (500 * 2 / 0.06)
v = sqrt (16,666.67)
<span>v = 129.10 m/s</span>