1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
3 years ago
6

A baseball pitcher throws a baseball horizontally at a linear speed of 42.5 m/s (about 95 mi/h). Before being caught, the baseba

ll travels a horizontal distance of 16.5 m and rotates through an angle of 49.0 rad. The baseball has a radius of 3.67 cm and is rotating about an axis as it travels, much like the earth does. What is the tangential speed of a point on the "equator" of the baseball?
Physics
1 answer:
Marina CMI [18]3 years ago
5 0

Answer:

4.5m/s

Explanation:

Linear speed (v) = 42.5m/s

Distance(x) = 16.5m

θ= 49.0 rad

radius (r) = 3.67 cm

= 0.0367m

The time taken to travel = t

Recall that speed = distance / time

Time = distance / speed

t = x/v

t = 16.5/42.5

t = 0.4 secs

tangential velocity is proportional to the radius and angular velocity ω

Vt = rω

Angular velocity (ω) = θ/t

ω = 49/0.4

ω = 122.5 rad/s

Vt = rω

Vt = 0.0367 * 122.5

Vt =4.5 m/s

You might be interested in
Waves are observed passing under a dock. Wave crests are 8.0 meters apart. The time for a complete wave to pass by is 4.0 second
ki77a [65]
To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are.  We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.

You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that  1/4  of the wave passes by in 1 second.

There's your frequency . . .  1/4 per second, or  0.25 Hz.
6 0
3 years ago
A dime is placed in front of a concave mirror that has a radius of curvature R = 0.40 m. The image of the dime is inverted and t
andrew11 [14]

Answer:

distance between the dime and the mirror, u = 0.30 m

Given:

Radius of curvature, r = 0.40 m

magnification, m = - 2 (since,inverted image)

Solution:

Focal length is half the radius of curvature, f = \frac{r}{2}

f = \frac{0.40}{2} = 0.20 m

Now,

m = - \frac{v}{u}

- 2 = -\frac{v}{u}

\frac{v}{u} = 2                  (2)

Now, by lens maker formula:

\frac{1}{f} = \frac{1}{u} + \frac{1}{v}

\frac{1}{v} = \frac{1}{f} - \frac{1}{u}

v = \frac{uf}{u - f}            (3)

From eqn (2):

v = 2u

put v = 2u in eqn (3):

2u = \frac{uf}{u - f}

2 = \frac{f}{u - f}

2(u - 0.20) = 0.20

u = 0.30 m

6 0
3 years ago
A ray of light travels across a liquid-to-glass interface. if the indices of refraction for the liquid and glass are, respective
prisoha [69]
When it comes to optics, Snell's law is the basic formula to be used. If you notice, when light hits the water, the light does not travel in the same direction. After, it hits the water, it changes in angle. Light becomes refracted. This is observed when your hands tend to become bigger if you place it underwater. The formula for Snell's Law is

n₁ sin θ₁ = n₂sin θ₂, where n is the index of refraction. This depends on the type of medium. For example, for air, n=1. The parameters θ₁ is the angle of incidence, and θ₂ is the angle of refraction. Critical angle is the incident angle needed so that the refract angle is 90°. So, modifying the equation:

n₁ sin θcrit = n₂sin 90°, since sin 90°=1,
sin θcrit = n₂/n₁
θcrit = sin ⁻¹ (n₂/n₁)

Since liquid comes first before glass, n₁=1.75 and n₂=1.52. Substituting,
θcrit = sin ⁻¹ (1.52/1.75)
θcrit = 60.29°

7 0
3 years ago
Pretty cool, the atoms that exist in your body are some of the same atoms that have existed since the beginning of the universe.
marusya05 [52]

Answer:

was is carl sagan?

Explanation:

please forgive me if im wrong :(

8 0
3 years ago
Read 2 more answers
How can you verify the archimedes principle?​
Ipatiy [6.2K]

Answer:

It is found that W1 - W2 loss in weight of solid when immersed in water is equal to the weight of the water displaced by the body. This verifies Archimedes' principle.

6 0
3 years ago
Other questions:
  • The weight of a box is found to be 30 N. What is the approximate mass of the box?
    11·2 answers
  • What is the mass of an object if a net force of 8.0 N causes it to accelerate at 1.1 m/s2?
    7·1 answer
  • A uniformly charged conducting sphere of 1.3 m diameter has a surface charge density of 8.1 µc/m2. (a) find the net charge on th
    9·1 answer
  • The force of friction is in the same direction as the object is moving <br><br> true<br> false
    12·1 answer
  • ASAP Is a phone sliding down a binder potential and kinetic energy.
    14·2 answers
  • How are light years used to measure distances in the universe
    15·1 answer
  • A ball is thrown straight up into the air with a velocity of 12 m/s. Draw a motion diagram for the ball and then give as much qu
    8·1 answer
  • A force of 350n Acts on an object of mass 17.5 kg what acceleration does it produce​
    13·1 answer
  • Eroded debris that is dropped at the glaciers farthest extent when ice melts at the front of the glacier as seen in the image is
    13·1 answer
  • How might "Roller Coaster Physics" have been different if the author's purpose had been to warn
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!