Answer= 8m/s
Because total Momentum before= total momentum after
Momentum before (p=mu)
p=(4)(12)= 48
p=2(0)=0
So total momentum before=48
Momentum after (p=mu)
Masses combined —2+4=6kg
p=6u
Mb=Ma
48=6u
u=8m/s
The sound wave will have traveled 2565 m farther in water than in air.
Answer:
Explanation:
It is known that distance covered by any object is directly proportional to the velocity of the object and the time taken to cover that distance.
Distance = Velocity × Time.
So if time is kept constant, then the distance covered by a wave can vary depending on the velocity of the wave.
As we can see in the present case, the velocity of sound wave in air is 343 m/s. So in 2.25 s, the sound wave will be able to cover the distance as shown below.
Distance = 343 × 2.25 =771.75 m
And for the sound wave travelling in fresh water, the velocity is given as 1483 m/s. So in a time interval of 2.25 s, the distance can be determined as the product of velocity and time.
Distance = 1483×2.25=3337 m.
Since, the velocity of sound wave travelling in fresh water is greater than the sound wave travelling in air, the distance traveled by sound wave in fresh water will be greater.
Difference in distance covered in water and air = 3337-772 m = 2565 m
So the sound wave will have traveled 2565 m farther in water than in air.
Answer:

Explanation:
The time lag between the arrival of transverse waves and the arrival of the longitudinal waves is defined as:

Here d is the distance at which the earthquake take place and
is the velocity of the transverse waves and longitudinal waves respectively. Solving for d:

Answer:
(a) the mechanical energy of the system, U = 0.1078 J
(b) the maximum speed of the object, Vmax = 0.657 m/s
(c) the maximum acceleration of the object, a_max = 15.4 m/s²
Explanation:
Given;
Amplitude of the spring, A = 2.8 cm = 0.028 m
Spring constant, K = 275 N/m
Mass of object, m = 0.5 kg
(a) the mechanical energy of the system
This is the potential energy of the system, U = ¹/₂KA²
U = ¹/₂ (275)(0.028)²
U = 0.1078 J
(b) the maximum speed of the object

(c) the maximum acceleration of the object

car suspension
guitar string
clips for hanging clothes
keyboards buttons
elevators