1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
antoniya [11.8K]
3 years ago
7

Post Test: Forces and Motion

Physics
1 answer:
Len [333]3 years ago
8 0

Answer: B to C

Explanation: The line is curving inwards, practically calculating the stance that it had went down. If it went straight across, it stayed the same till a specific point, furthermore calculating the bent line bending upwards is actually a partial-raise, conclude points B to C is most likely an un-even balance, meaning it had went down; or decreasing. B to C is the decreasing segment of this equation/problem (question).

You might be interested in
Which of these describes Kepler’s third law of orbital motion?(1 point)
Nadusha1986 [10]

Answer:

T2 ∝ a3

Explanation: took the quick check

4 0
1 year ago
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+
babunello [35]

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

4 0
3 years ago
A thin, rectangular sheet of metal has mass M and sides of length a and b. Find the moment of inertia of this sheet about an axi
Lubov Fominskaja [6]

Answer:

The moment of inertia is I=\frac{M}{12} a^{2}

Explanation:

The moment of inertia is equal:

I=\int\limits^a_b {r^{2} } \, dm

If r is -\frac{a}{2}

and dm=\frac{M}{a} dr

I=\int\limits^a_b {r^{2}\frac{M}{a}  } \, dr\\a=\frac{a}{2} \\b=-\frac{a}{2}

I=\frac{M}{a} \int\limits^a_b {r^{2}  } \, dr\\\\I=\frac{M}{a} (\frac{M}{3} )_{b}^{a}\\  I=\frac{M}{3a} (\frac{a^{3} }{8} +\frac{a^{3} }{8} )\\I=\frac{M}{12} a^{2}

7 0
3 years ago
Give 10 examples of units you might use or see in any given day
Ierofanga [76]
Cups
teaspoon
tablespoon
liters
milliliters
gallons
pints
tons
inches
3 0
3 years ago
In the woman's mouth if
Tpy6a [65]

Answer:

hi mate,

interesting question, first of all the pressure is determined by using the following formula:

Pg = p * G * h  

where p is the density of the liquid, G is the gravity and h is the height difference, in you case you have:

p = 1015 kg/m3

G = 9.8m/s2

h = 0.085 m  

insert these values into the equation above:

Pg = 1015 kg/m3 * 9.8m/s2 * 0.085 m = 849.81 kg·m-1·s-2 or 849.81 pascal

hope it helps, :-)

please mark me as brainliest

7 0
2 years ago
Other questions:
  • 1. A car with a mass of 1,500 kilograms is moving around a circular curve at a uniform velocity of 16 m/s. The curve has a radiu
    7·2 answers
  • Maritime climates can be expected in the middle of large continents.<br><br> True<br> False
    8·1 answer
  • Why is zinc chloride a substance and not a mixture
    14·1 answer
  • A flowerpot weighing 2 kilograms, what will be its speed at the end of 5 seconds?
    8·1 answer
  • The earth's radius is 6.37×10^6m; it rotates once every 24 hours. with the angular speed of 7.3 x 10^-5 what is the speed of a p
    6·1 answer
  • A point charge is placed 3 m from a 4 uC charge. What is the strength of the electric field on the point charge at this
    12·2 answers
  • Electric force and magnetic force are the only forces that can both do what? *
    14·1 answer
  • What is the answer??
    10·1 answer
  • This is the answer for the questions good luck
    9·1 answer
  • During takeoff, an airplane goes from 0 to 60 m/s in 10 s.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!