1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leni [432]
3 years ago
14

If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the initial displacement is 2.25 m, and the

change in momentum is 0.58 kg*m/s, how far will it coast back up the ramp before changing directions? Please express your answers with 4 decimal place. _________________________ m
Physics
1 answer:
gtnhenbr [62]3 years ago
5 0

Answer:

L_f = 0.0196

Explanation:

given,

mass of the car,m = 0.2 Kg

height to width of ramp, y/x = 12/75

initial displacement, L_i = 2.25 m

change in momentum, Δp = 0.58 kg.m/s

distance of change in direction of the ramp, L_f = ?

Using equation

\Delta P = m \sqrt{\dfrac{2gy}{x}} (\sqrt{L_i}+\sqrt{L_f})

inserting all the values

0.58 = 0.2\times \sqrt{\dfrac{2\times 9.8\times 12}{75}} (\sqrt{2.25}+\sqrt{L_f})

1.5 + \sqrt{L_f} = 1.64

\sqrt{L_f}=0.14

L_f = 0.0196

The car will cost back up to the distance of 0.0196 m

You might be interested in
A block measure 10 cm by 10 cm by 5 cm , what is it’s volume
Lina20 [59]
I think it is 500 cm. Hope I helped!
5 0
3 years ago
A 14.0 gauge copper wire of diameter 1.628 mm carries a current of 12.0 mA . A) What is the potential difference across a 1.80 m
Serga [27]

Answer: a) 139.4 μV; b) 129.6 μV

Explanation: In order to solve this problem we have to use the Ohm law given by:

V=R*I whre R= ρ *L/A  where ρ;L and A are the resistivity, length and cross section of teh wire.

Then we have:

for cooper R=1.71 *10^-8* 1.8/(0.001628)^2= 11.61 * 10^-3Ω

and for silver R= 1.58 *10^-8* 1.8/(0.001628)^2=10.80 * 10^-3Ω

Finalle we calculate the potential difference (V) for both wires:

Vcooper=11.62* 10^-3* 12 * 10^-3=139.410^-6 V

V silver= 10.80 10^-3* 12 * 10^-3=129.6 10^-6 V

8 0
3 years ago
Read 2 more answers
The parallel plates in a capacitor, with a plate area of 7.90 cm2 and an air-filled separation of 2.70 mm, are charged by a 7.90
s2008m [1.1K]

Answer:

A) 26V

Explanation:

(a) the potential difference between the plates

Initial capacitance can be calculated using below expresion

C1= A ε0/ d1

Where d1= distance between = 2.70 mm= 2.70× 10^-3 m

ε0= permittivity of space= 8.85× 10^-12 Fm^-1

A= area of the plate = 7.90 cm2 = 7.90 ×10^-4 m^2

If we substitute the values we

C1= A ε0/ d1

=( 7.90 ×10^-4 × 8.85× 10^-12 )/2.70× 10^-3

C1=2.589 ×10^-12 F= 2.59 pF

Initial charge can be determined using below expresion

q1= C1 × V1

V1=2.589 ×10^-12 F

V1= voltage=7.90 V

If we substitute we have

q1= 2.589 ×10^-12 × 7.90

q1= 20.45×10^-12C

20.45 pC

Final capacitance can be calculated as

C2= A ε0/ d2

d2=8.80 mm= /8.80× 10^-3

7.90 ×10^-4 × 8.85× 10^-12 )/8.80× 10^-3

C1=0.794 ×10^-12 F= 0.794 pF

Final charge= initial charge

q2=q1 (since the battery is disconnected)

q2=q1= 20.45 pC

Final potential difference

V2= q/C2

= 20.45/0.794

= 26V

6 0
3 years ago
Determine the frequency of light whose wavelength is 4.257 x10-7 cm
Bas_tet [7]
<span>Frequency x Wavelength = Speed of light Now, speed of light = 3 x 10^5 km/s = 3 x 10^8 m/s = 3 x 10^10 cm/s Frequency = speed/Wavelength = (3 x 10^10)/(4.257 x 10^-7) =7 x 10^16 Hz</span>
6 0
3 years ago
A child, hunting for his favorite wooden horse, is running on the ground around the edge of a stationary merry-go-round. The ang
olga55 [171]

Answer:

9.22 s

Explanation:

One-quarter of a turn away is 1/4 of 2π, or π/2 which is approximately 1.57 rad

Let t (seconds) be the time it takes for the child to catch up with the horse. We would have the following equation of motion for the child and the horse:

For the child: s_c = \omega_ct = 0.233t

For the horse: s_h = s_0 + a_ht^2/2 = 1.57 + 0.0136t^2/2 = 1.57 + 0.0068t^2

For the child to catch up with the horse, they must cover the same angular distance within the same time t:

s_c = s_h

0.233t = 1.57 + 0.0068t^2

0.0068t^2 - 0.233t + 1.57 = 0

t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

t= \frac{0.233\pm \sqrt{(-0.233)^2 - 4*(0.0068)*(1.57)}}{2*(0.0068)}

t= \frac{0.233\pm0.11}{0.0136}

t = 25.05 or t = 9.22

Since we are looking for the shortest time we will pick t = 9.22 s

6 0
3 years ago
Other questions:
  • explain how a convection current is set up in water. The explanation has been started for you: When the heating element is switc
    5·2 answers
  • Traumatic brain injury such as concussion results when the head undergoes a very large acceleration. Generally, an acceleration
    6·1 answer
  • A person can run 280 m in 68 s. At what speed are they running?
    12·2 answers
  • A police car waits in hiding slightly off the highway. A speeding car is spotted by the police car doing 40 m/s. At the instant
    11·1 answer
  • How many electrons point in <br>2 second in a wire carrying a current of 20mA ?​
    15·1 answer
  • What advice would a personal trainer give you before a workout?
    7·2 answers
  • Running with an initial velocity of 13 m/s , a horse has an average acceleration of -1.88 m/s2 . How long does it take for the h
    5·1 answer
  • Skydiver jumps out of a plane she falls down word and very fast P. When she Open Sarah parachute she slows down. What force pull
    5·1 answer
  • What is the acceleration of softball if it has a mass of 0.5 kg and hits the catcher's
    6·1 answer
  • Are the two bulbs acting as current dividers or potential dividers? Explain your answer​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!