<span>Electric field repulsive for objects of like charge and attractive for opposite type of charges and for a magnet you can say that like poles repel and unlike attracts so D makes sense</span>
Answer: 0°
Explanation:
Step 1: Squaring the given equation and simplifying it
Let θ be the angle between a and b.
Given: a+b=c
Squaring on both sides:
... (a+b) . (a+b) = c.c
> |a|² + |b|² + 2(a.b) = |c|²
> |a|² + |b|² + 2|a| |b| cos 0 = |c|²
a.b = |a| |b| cos 0]
We are also given;
|a+|b| = |c|
Squaring above equation
> |a|² + |b|² + 2|a| |b| = |c|²
Step 2: Comparing the equations:
Comparing eq( insert: small n)(1) and (2)
We get, cos 0 = 1
> 0 = 0°
Final answer: 0°
[Reminders: every letters in here has an arrow above on it]
Answer:
For elliptical orbits: seldom
For circular orbits: always
Explanation:
We start by analzying a circular orbit.
For an object moving in circular orbit, the direction of the acceleration (centripetal acceleration) is always perpendicular to the direction of motion of the object.
Since acceleration has the same direction of the force (according to Newton's second law of motion), this means that the direction of the force (the centripetal force) is always perpendicular to the velocity of the object.
So for a circular orbit,
the direction of the velocity of the satellite is always perpendicular to the net force acting upon the satellite.
Now we analyze an elliptical orbit.
An elliptical orbit correponds to a circular orbit "stretched". This means that there are only 4 points along the orbit in which the acceleration (and therefore, the net force) is perpendicular to the direction of motion (and so, to the velocity) of the satellite. These points are the 4 points corresponding to the intersections between the axes of the ellipse and the orbit itself.
Therefore, for an elliptical orbit,
the direction of the velocity of the satellite is seldom perpendicular to the net force acting upon the satellite.
<span>One
of three things the photon passes through unscathed, the photon gets
absorbed by the electron of an atom and stays put, or the photon gets
absorbed and a second generation photon is generated by that electron</span>