Answer: The covalent bonds within a molecule are very (strong). However it requires (less) energy to melt a molecular compound than an ionic compound.
This is because the attractive forces between individual molecules are (weaker) than the forces between ions in an ionic compound.
Answer:
Explanation:
You must convert the 6.00 grams of H₂ into number of moles, and then use the stoichiometry of the reaction to find the number of moles of NH₃, which can be converted into volume using the ideal gas equation.
<u></u>
<u>1. Number of moles of H</u><u>₂</u>
- number of moles = mass in grams / molar mass
- molar mass of H₂ = 2.016g/mol
- number of moles = 6.00grams / 2.016g/mol = 2.97619mol
<u></u>
<u>2. Number of moles of NH</u><u>₃</u>
<u></u>
i) Chemical equation:
ii) Mole ratio:
iii) Proportion:
- x mol NH₃ / 2.97619mol H₂ = 3 mol NH₃ / 2 mol H₂
<u>3. Volume of NH₃</u>
- V = 4.4642857mol × 0.08206 atm·liter/(K·mol) × 506K / 2.05atm
Dissolution means to make the compound apart, So when we have ionic compounds like NaI which has metal and non-metal ions, It separates into parts of positive ions and negative ions. After we separate this compound apart we will put the charge of each on above its symbol and then start to balance the equation of the dissolution.
So the dissolution equation of NaI is:
NaI(s) → Na^+(s) + I^-(Aqu)
Answer:
That they are miscible in one another