The pressure gets increased to 486 kPa from 405 kPa, when the volume is decreased from 6 cm³ to 4 cm³.
Explanation:
In the present problem, the temperature is said to remain at constant and there is change in the pressure. So according to Boyle's law, the relationship between pressure and volume of any gaseous objects are inversely related to each other. In other words, the pressure attained by gas molecules in a container will be inversely proportional to the volume of the gas molecules occupied in the container, at constant temperature.

So, if two volumes V₁ and V₂ are considered, then their respective pressure will be represented as P₁ and P₂. Then, as per Boyle's law,

So let us consider, V₁ = 6 cm³ and V₂ = 4 cm³ and pressure P₁ = 405 kPa and we have to determine P₂.
Then, 
So, the pressure at new volume of 4 cm³ is 486 kPa. It can be seen that as there is decrease in the volume, there is an increase in the pressure. So it satisfied the Boyle's law.
Thus, the pressure gets increased to 486 kPa from 405 kPa, when the volume is decreased from 6 cm³ to 4 cm³.
(23.1 + 5.61 + 1.008) × 7.6134 × 8.431
= 29.718 × 7.6134 × 8.431
=1907.55608
The equation is solved in the manner that the term in the bracket is added first then mutiplication is done as according to Bodmas rule, if an equation contains brackets that need to be solved first then other operation that is division,multiplication, addition and subtraction are performed from left to right .
Alkanes are hydrocarbons that only contain single bonds in them. A carbon can bond with up to 4 atoms, even with another carbon atom. So, in a C-C bond, 3 more H atoms can bond to each of the C atom. Generally, the chemical formula for alkanes is CₓH₂ₓ₊₂. So for butane, there are 4 C atoms. The corresponding H atoms are 2(4) + 2 = 10. That's why it's chemical formula is C₄H₁₀.
Answer:
Final pressure in (atm) (P1) = 6.642 atm
Explanation:
Given:
Initial volume of gas (V) = 12.5 L
Pressure (P) = 784 torr
Temperature (T) = 295 K
Final volume (V1) = 2.04 L
Final temperature (T1) = 310 K
Find:
Final pressure in (atm) (P1) = ?
Computation:
According to combine gas law method:

⇒ Final pressure (P1) = 5,048.18877 torr
⇒ Final pressure in (atm) (P1) = 5,048.18877 torr / 760
⇒ Final pressure in (atm) (P1) = 6.642 atm