1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
3 years ago
10

QueSLIUILIU

Physics
1 answer:
Anna [14]3 years ago
3 0
Slow moving vehicles (SMV) travel at speeds of 25mph or slower. They are not allowed to exceed a speed of 25 mph.
You might be interested in
A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the f
jonny [76]

Answer:

<em>Entropy Change = 0.559 Times</em>

Explanation:

Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.

5 0
4 years ago
PLS HELP WILL MARK BRAINLIEST
MariettaO [177]

Answer:

2.835 Watts

Explanation:

P = I²R

P = 1.5² × 1.26

P = 2.835 Watts

3 0
3 years ago
Read 2 more answers
A boy throws a ball up into the air with a speed of 8.2 m/s. The ball has a mass of 0.3 kg. How much gravitational potential ene
diamong [38]
We can use the law of conservation of energy to solve the problem.

The total mechanical energy of the system at any moment of the motion is:
E=U+K = mgh + \frac{1}{2}mv^2
where U is the potential energy and K the kinetic energy.

At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:
E_i = K_i =  \frac{1}{2}mv^2 =  \frac{1}{2}(0.3 kg)(8.2 m/s)^2=10.09 J

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:
E_f = U_f
But the mechanical energy must be conserved, Ef=Ei, so we have
U_f = K_i
and so, the potential energy at the top of the flight is
U_f = K_i = 10.09 J
7 0
3 years ago
Read 2 more answers
A girl weighing 50 kgf wears sandals of pencil heel of area of cross section 1 cm^2, stands on the floor.An elephant weighing 20
Klio2033 [76]

Answer:

\boxed{{\boxed{\blue{ 12.5}}}}

Explanation:

Given, for girl : Weight or force;

\rm \: F_1 = 50 \: kgf

Area of both heels;

\rm \: A_1 =  \; 2 ×1 \;  cm^2 = 2  \: cm^2

\rm \: Pressure \:  P_1  =  \cfrac{F_1}{ A_1 }  =  \dfrac{50 \: kgf}{2 \: cm {}^{2} }  = 25 \: kgf \: cm {}^{ - 1}

For elephant, Weight = Force \rm F_2 = 2000 kg•f

Area of 4 feet;

\rm \: A_2  = \; 4 \times 250 \;  cm^2 = 1000 \:  cm^2

\rm \: Pressure \:  P_2 = {F_2}/{A_2} \;  = \cfrac{2 \cancel{0 00 }\:  kgf}{1 \cancel{000} \: cm^2} =  2 \: kgf \: { \:cm}^{- 1}

Now;

\rm  = \dfrac{Pressure \:  Exerted  \: by  \: the \:  Girl}{Pressure  \: exerted  \: by \:  the  \: elephant}

=  \rm \: P_1/P_2

\implies    \rm\cfrac{25 \: kgf \: \: cm {}^{ - 2} }{2 \: kgf \: cm {}^{ - 2} } =  \rm\cfrac{25 \:  \cancel{kgf \: \: cm {}^{ - 2}} }{2 \: \cancel{ kgf \: cm {}^{ - 2}} } = \boxed{12.5}

Thus, the girl's pointed heel sandals exert 12.5 times more pressure P than the pressure P exerted by the elephant.

I aspire this helps!

3 0
3 years ago
Which statement best describes a characteristic of gases?
salantis [7]
Assumes the shape and volume of its container 
<span>particles can move past one another</span>
8 0
3 years ago
Other questions:
  • An object is dropped from rest and falls freely 20 m to Earth. When is the speed of the object 9.8 m/s?
    6·1 answer
  • In an incompressible three-dimensional flow field, the velocity components are given by u = ax + byz; υ = cy + dxz. Determine th
    14·1 answer
  • Rowan is walking in a shallow, clear bay, in still water just over her knees. When she looks down at her feet in the sand, she n
    10·1 answer
  • A world class sprinter is travelling with speed 12.0 m/s at the end of a 100 meter race. Suppose he decelerates at the rate of 2
    14·1 answer
  • 1) What happens to the energy carried in the transverse wave as the<br> amplitude increases? *
    7·1 answer
  • Question 1
    14·1 answer
  • The body is subjected to a force of 0,4 N m with a shoulder of 5 cm. What is the magnitude of this force?​
    11·1 answer
  • PROJECTILE MOTION FOR TWO Rocks-VELOCITY-TIME GRAPHS
    11·1 answer
  • A 2N and 6N force pull on an object to the right and a 4N force pulls to the left a 0.5kg object. What is the net force on the o
    14·1 answer
  • At left A red ball in a box with arrows pointing away from the ball in all directions. In the middle, a blue ball in a box with
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!