Answer:
9.80 g
Explanation:
The molecular mass of the atoms mentioned in the question is as follows -
S = 32 g / mol
F = 19 g / mol
The molecular mass of the compound , SF₆ = 32 + ( 6 * 19 ) = 146 g / mol
The mass of 6 F = 6 * 19 = 114 g /mol .
The percentage of F in the compound =
mass of 6 F / total mass of the compound * 100
Hence ,
The percentage of F in the compound = 114 g /mol / 146 g / mol * 100
78.08 %
Hence , from the question ,
In 12.56 g of the compound ,
The grams of F = 0.7808 * 12.56 = 9.80 g
The concentration of [H3O⁺]=2.86 x 10⁻⁶ M
<h3>Further explanation</h3>
In general, the weak acid ionization reaction
HA (aq) ---> H⁺ (aq) + A⁻ (aq)
Ka's value
![\large {\boxed {\bold {Ka \: = \: \frac {[H ^ +] [A ^ -]} {[HA]}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKa%20%5C%3A%20%3D%20%5C%3A%20%5Cfrac%20%7B%5BH%20%5E%20%2B%5D%20%5BA%20%5E%20-%5D%7D%20%7B%5BHA%5D%7D%7D%7D%7D)
Reaction
HC₂H₃O₂ (aq) + H₂O (l) ⇔ (aq) + H₃O⁺ (aq) Ka = 1.8 x 10⁻⁵
![\tt Ka=\dfrac{[C_2H_3O^{2-}[H_3O^+]]}{[HC_2H_3O_2]}}\\\\1.8\times 10^{-5}=\dfrac{0.22\times [H_3O^+]}{0.035}](https://tex.z-dn.net/?f=%5Ctt%20Ka%3D%5Cdfrac%7B%5BC_2H_3O%5E%7B2-%7D%5BH_3O%5E%2B%5D%5D%7D%7B%5BHC_2H_3O_2%5D%7D%7D%5C%5C%5C%5C1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cdfrac%7B0.22%5Ctimes%20%5BH_3O%5E%2B%5D%7D%7B0.035%7D)
[H₃O⁺]=2.86 x 10⁻⁶ M
Answer:
Iron has 5 unpaired electrons in Fe⁺³ state.
Explanation:
Iron having atomic number 26 has following electronic configuration in neutral state.
Fe = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d⁶
When Iron looses three electrons it attains +3 charge with following electronic configuration.
Fe⁺³ = 1s², 2s², 2p⁶, 3s², 3p⁶, 3d⁵
The five electrons in d-orbital exist in unpaired form as,
3(dz)¹, 3d(xz)¹, 3d(yz)¹, 3d(xy)¹, 3(dx²-y²)¹
Answer:
D) both a and c are correct
Explanation:
The reaction rate is a measure of the speed of a chemical reaction. The factors that affects the rate of a chemical reaction are itemised below:
- Nature of the reactants
- Concentration of the reactants or pressure(if gaseous)
- Temperature
- Presence of catalyst
- Sunlight
Our concern here is temperature. Temperature affects a reaction considerably. Average kinetic energy is directly proportional to the temperature of the reacting particles. When the temperature of a reacting system is increase, the frequency of ordinary and effective collisions per unit time increases. A decrease in temperature implies that the number of collisions also decreases.
Answer:
D.
Explanation:
Cause the weather made those rocks. Like volcanos and weather.