The maximum velocity in a banked road, ignoring friction, is given by;
v = Sqrt (Rg tan ∅), where R = Radius of the curved road = 2*1000/2 = 1000 m, g = gravitational acceleration = 9.81 m/s^2, ∅ = Angle of bank.
Substituting;
30 m/s = Sqrt (1000*9.81*tan∅)
30^2 = 1000*9.81*tan∅
tan ∅ = (30^2)/(1000*9.81) = 0.0917
∅ = tan^-1(0.0917) = 5.24°
Therefore, the road has been banked at 5.24°.
When a relationship between two different things is shown in a fraction it is a ratio.
hope this helps :)
The correct statements are that the speed decreases as the distance decreases and speed increases as the distance increases for the same time.
Answer:
Option A and Option B.
Explanation:
Speed is defined as the ratio of distance covered to the time taken to cover that distance. So Speed = Distance/Time. In other words, we can also state that speed is directly proportional to the distance for a constant time. Thus, the speed will be decreasing as there is decrease in distance for the same time. As well as there will be increase in speed as the distance increases for the same time. So option A and option B are the true options. So if there is decrease in the distance due to direct proportionality the speed will also be decreasing. Similarly, if the distance increases, the speed will also be increasing.