Answer:
Latitude:
Longitude:
Explanation:
Lets begin by explaining the meaning of latitude and longitude as geogrephical coordinates:
Latitude is the angular distance between the equatorial line, and a specific point on the Earth. It is measured in degrees and is represented according to the hemisphere in which the point is located, which can be north or south latitude.
In this sense latitude
refers to the equatorial line that divides the Earth in two hemispheres (North and South).
Longitude represents the specific east–west position of a point on the Earth's surface, being longitude
the prime meridian or Greenwich meridian.
So, according to the figure, where the model of the Earth is divided by latitude lines separated by
and the longitude lines separated by
; we only have to count the lines from the equator to the line where the point A is, and count the lines fromo the Prime meridian to the line where point A is located.
Hence, point A location is:
Latitude:
Longitude:
(35 kg)*(1000 g / 1 kg)
(35 kg / 1 kg)*(1000 g)
kg units cancel, you're left with units of g
35/1*1000 = 35,000
ANSWER:
35,000 g
Answer:
MgSO4.7H2O
Explanation:
Let the formula for the hydrated magnesium sulphate be MgSO4.xH2O
Mass of the hydrated salt (MgSO4.xH2O) = 12.845g
Mass of anhydrous salt (MgSO4) = 6.273g
Mass of water molecule(xH2O) = Mass of the hydrated salt — Mass of anhydrous salt = 12.845 — 6.273 = 6.572g
Now,we can obtain the number of mole of water molecule present in the hydrated salt as follows:
Molar Mass of hydrated salt (MgSO4.xH2O) = 24 + 32 + (16x4) + x(2 + 16) = 24 + 32 + 64 + x(18) = 120 + 18x
Mass of xH2O/ Molar Mass of MgSO4.xH2O = Mass of water / mass of hydrated salt
18x/120 + 18x = 6.572/12.845
Cross multiply to express in linear form
18x x 12.845 = 6.572(120 + 18x)
231.21x = 788.64 + 118.296x
Collect like terms
231.21x — 118.296x = 788.64
112.914x = 788.64
Divide both side by 112.914
x = 788.64 /112.914
x = 7
Therefore the formula for the hydrated salt (MgSO4.xH2O) is MgSO4.7H2O
Answer:
Fe
Explanation:
<em>Ferrum</em><em> </em>[Iron] has the most stable nucleus because of <em>binding</em><em> </em><em>energy</em><em> </em><em>per</em><em> </em><em>nucleon</em><em>.</em><em> </em>Although Uranium<em> </em>is<em> </em>another possibility, in this case, it is more radioactive than Iron. It disintegrates very swiftly that all is done so, just to achieve stability.
I hope this helps you out alot, and as always, I am joyous to assist anyone at any time.