Answer:
Standard form: (x+3)^2=1/2(y+3)
f(1) = 29
f(-1) = 5
Explanation:
The standard form of a parabola with a directrix that is horizontal is
(x-h)=4(P)(y-k)
Using the vertex form, find the vertex, foci, and the distance from the vertex to the focus or directrix.
It's easier to use the vertex form to plug in values for x.
f(1) = 2((1)+3)^2-3
f(1) = 29
f(-1) = 2((-1)+3)^2-3
f(-1) = 5
I'm going to have to say A. My reason to that is because when you leave a cup of hot cocoa (assuming its hot), it gives off the heat (exothermic) the
The answer is 17 and a half
Following reaction occurs in the given electrochemical system:

→ Fe +

Thus, under standard conditions
E(0) = E(0) Fe2+/Fe - E(0) Zn2+/Zn
where,

= standard reduction potential of Fe2+/Fe = -0.44 v

= standard reduction potential of Zn2+/Zn = -0.763 v
E(0) = 0.323 v
now, we know that, ΔG(0) =-nFE(0) ............... (1)
Also, Δ

On equating and rearranging equation 1 and 2, we get
K = exp(

)= exp (

) = 8.46 x
Answer:
Option 2= Glucose
Explanation:
Cell membrane is made up of two phospholipid layers and each contain phosphate head and fatty acid or lipid tails. the head is present between the outer and inner boundaries and tail is present in between. The small non- polar molecules can pass the membrane through simple diffusion. This lipid tail restrict the passage of polar molecules including water soluble substances like glucose. However, transmembranes are present that allow the molecules to inter that are blocked by the tails.
Facilitated diffusion:
it is a type of diffusion in which caries protein without using the cellular energy shuttle the molecules to the cell membrane. Glucose is bind on the carrier protein ,change the shape and transport it from one to another side of membrane. In order to absorb the glucose red blood cells use this kind of diffusion.
Primary active transport:
The cells that are present along small intestine use this type of transport to pump the glucose inside the cell. The primary active transport require energy to transport the glucose inside.
Secondary active transport:
It is another method of transport of glucose into the cell. This method can not use ATP but it is based on concentration gradient of the sodium that provide electro chemical energy for the glucose transport.