Answer:
The answer is
<h2>0.89 atm </h2>
Explanation:
To convert from kPa to atm we use the conversion
101.325 kPa = 1 atm
If
101.325 kPa = 1 atm
Then
90.23 kPa will be

We have the final answer as
<h3>0.89 atm</h3>
Hope this helps you
Cyclohexane - cyclic hydrocarbon with 6 carbon atoms.
2 methyl groups (-CH3) on carbon atom number 1
Hope it helped!
Answer:
6.05 g
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity
V = volume of solution in liter ,
n = moles of solute ,
From the question ,
M = 200mM
Since,
1 mM = 10⁻³ M
M = 200 * 10⁻³ M
V = 250 mL
Since,
1 mL = 10⁻³ L
V = 250 * 10⁻³ L
The moles can be calculated , by using the above relation,
M = n / V
Putting the respective values ,
200 * 10⁻³ M = n / 250 * 10⁻³ L
n = 0.05 mol
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
m = 121 g/mol
n = 0.05 mol ( calculated above )
The mass of tri base can be calculated by using the above equation ,
n = w / m
Putting the respective values ,
0.05 mol = w / 121 g/mol
w = 0.05 mol * 121 g/mol
w = 6.05 g
Answer:- B- 
Explanations:- Sharing of electrons takes place between non metals and the bond formed by the sharing of electrons is known as covalent bond. In first choice we only have a zinc metal and so no sharing of electrons would be possible here.
In third choice we have NaCl. Na is a metal and Cl is a non metal. The property of metals is to transfer its valence electrons to the non metal and the bond formed is known as ionic bond. So, third choice is also not correct.
In choice B we have sulfate ion that has sulfur and oxygen atoms and both of these are non metals. So, sharing of electrons is present here between the S and O atoms and covalent bonds are formed.
So, choice B-
is the right answer.
The chemical formula depends on the type of acids it is. Acidic rain is a complex mixture of nitrous, nitric, sulfurous and sulfuric acids which all combine to lower the pH.