Answer:
<em>D. The total force on the particle with charge q is perpendicular to the bottom of the triangle.</em>
Explanation:
The image is shown below.
The force on the particle with charge q due to each charge Q = 
we designate this force as N
Since the charges form an equilateral triangle, then, the forces due to each particle with charge Q on the particle with charge q act at an angle of 60° below the horizontal x-axis.
Resolving the forces on the particle, we have
for the x-component
= N cosine 60° + (-N cosine 60°) = 0
for the y-component
= -f sine 60° + (-f sine 60) = -2N sine 60° = -2N(0.866) = -1.732N
The above indicates that there is no resultant force in the x-axis, since it is equal to zero (
= 0).
The total force is seen to act only in the y-axis, since it only has a y-component equivalent to 1.732 times the force due to each of the Q particles on q.
<em>The total force on the particle with charge q is therefore perpendicular to the bottom of the triangle.</em>
Answer:
i would say a) two playlists
hope this helps!
Explanation:
1 - Skull
2 - Mandible
3 - Scapula
4 - Sternum
5 - Ulna
6 - Radius
7 - Pelvis
8 - Femur
9 - Patella
10 - Tibia
11 - Fibula
12 - Metatarsals
13 - Clavicle
14 - Ribs (rib cage)
15 - Humerus
16 - Spinal column
17 - Carpals
18 - Metacarpals
19 - Phalanges
20 - Tarsals
21 - Phalanges
2.5m/s
Explanation:
Given parameters:
Initial velocity = 0m/s
Acceleration = 0.5m/s²
time of travel = 5s
Solution:
Final velocity = ?
Solution:
Acceleration can be defined as the change in velocity with time:
Acceleration = 
From the equation above, the unknown is final velocity:
Final velocity - initial velocity = Acceleration x time
since initial velocity = 0
Final velocity = 0.5 x 5 = 2.5m/s
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly