Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
The expression is :

A =[LT], B=[L²T⁻¹], C=[LT²]
Using dimensional of A, B and C in above formula. So,
![A=B^nC^m\\\\\ [LT]=[L^2T^{-1}]^n[LT^2}]^m\\\\\ [LT]=L^{2n}T^{-n}L^mT^{2m}\\\\\ [LT]=L^{2n+m}T^{2m-n}](https://tex.z-dn.net/?f=A%3DB%5EnC%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3D%5BL%5E2T%5E%7B-1%7D%5D%5En%5BLT%5E2%7D%5D%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%7DT%5E%7B-n%7DL%5EmT%5E%7B2m%7D%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%2Bm%7DT%5E%7B2m-n%7D)
Comparing the powers both sides,
2n+m=1 ...(1)
2m-n=1 ...(2)
Now, solving equation (1) and (2) we get :

Hence, the correct option is (E).
<span>Direction and magnitude it is also </span>determined<span> by the gravitational acceleration any impacts or interruptions are ignored. </span>
The position of the mass is given by (in cm):

The velocity is the derivative of the position:

Substituting t=0.40 s, we can find the velocity at this time:
Answer:
✓ Ion
Explanation:
Which term BEST describes the form of beryllium shown? Protons=4 Neutrons=5 Electrons=2
✓ Ion