Answer:
Explanation: Determine the gravitational acceleration. ...
Decide whether the object has an initial velocity. ...
Choose how long the object is falling. ...
Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt
Answer:
1. Nitrogen
2. Oxygen
3. Carbon dioxide
4. Water vapor
5. Ozone
Explanation:
The atmosphere composes of 78% nitrogen which occupies the largest percentage followed by oxygen which takes up 21%, Argon takes up 1% then other components such as water vapor occupy between 0-7% and ozone takes 0.0-0.01. Moreover, 0.01-0.1 is occupied by carbon dioxide. Therefore, the answers for 1-5 are as follows.
1. Nitrogen
2. Oxygen
3. Carbon dioxide
4. Water vapor
5. Ozone
Answer:
a) 6.26 m/s
b) 7.67 m/s
Explanation:
The potential energy at height h0 is initially ...
PE0 = mgh0
At height h1, the potential energy is ...
PE1 = mgh1
The difference in potential energy is converted to kinetic energy:
PE0 -PE1 = KE1 = (1/2)m(v1)^2
Solving for v1, we have ...
mg(h0 -h1) = (1/2)m(v1)^2
2g(h0 -h1) = (v1)^2
v1 = √(2g(h0 -h1))
__
a) When the body is 1 m high, its speed is ...
v = √(2(9.8)(3 -1)) ≈ 6.26 m/s . . . at 1 m high
__
b) When the body is 0 m high, its speed is ...
v = √(2(9.8)(3 -0)) ≈ 7.67 m/s . . . when it reaches the ground
Answer:
23.5 m/s
Explanation:
The velocity of the car in decelerated motion is given by
v = u + at
where
v = 0 is the final velocity
u is the initial velocity
a is the acceleration of the car
t = 3.0 s is the time it takes for the car to stop
The acceleration of the car is given by the frictional force, which is the only force acting on the car along the direction of motion, so:

where
is the coefficient of friction
Solving the previous equation for u, we find the initial velocity:

Answer:
Ice is the solid state of water, a normally liquid substance that freezes to the solid state at temperatures of 0 °C (32 °F) or lower and expands to the gaseous state at temperatures of 100 °C (212 °F) or higher.
Explanation: