Answer:

Explanation:
The apparent brightness follows an inverse square law, therefore we can write:

where I is the apparent brightness and r is the distance from the Sun.
We can also rewrite the law as
(1)
where in this problem, we have:
apparent brightness at a distance
, where
million km
We want to estimate the apparent brightness at
, where
is ten times
, so

Re-arranging eq.(1), we find
:

Answer:
Measurement is called the process of finding exact quantity of a substances.
The correct answer is compound
Explanation:
(a) Displacement of an object is the shortest path covered by it.
In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag. She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.
0.4 miles = 0.64 km
displacement = 0.7-0.3+0.64 = 1.04 km
(b) Average velocity = total displacement/total time
t = 15 min = 0.25 hour

Hence, this is the required solution.