Answer:
6.1328 kg
60.16284 N
Explanation:
r = Radius of ball = 0.11 m
= Density of fluid =
(Assumed)
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of ball
V = Volume of ball = 
The weight of the bowling ball will balance the buouyant force

The mass of the bowling ball will be 6.1328 kg
Weight will be 
Answer:
43km/h to m/s = 11.9444
Explanation:
1 km = 1000 m; 1 hr = 3600 sec. To convert km/hr into m/sec, multiply the number by 5 and then divide it by 18.
Answer:
b) 472HZ, 408HZ
Explanation:
To find the frequencies perceived when the bus approaches and the train departs, you use the Doppler's effect formula for both cases:

fo: frequency of the source = 440Hz
vs: speed of sound = 343m/s
vo: speed of the observer = 0m/s (at rest)
v: sped of the train
f: frequency perceived when the train leaves us.
f': frequency when the train is getTing closer.
Thus, by doing f and f' the subjects of the formulas and replacing the values of v, vo, vs and fo you obtain:

hence, the frequencies for before and after tha train has past are
b) 472HZ, 408HZ
Answer:
<h2>
44 m/s</h2>
Explanation:
In this problem we are expected to calculate the velocity of Georges movements.
Given data
Total distance covered by George= 850+250= 1100 meters
Time taken by George to cover the total distance= 25 seconds
We know that velocity is, v= distance/ time
Therefore substituting our data into the expression for velocity we have
v= 1100/ 25= 44 m/s
Hence the velocity in m/s is 44