Answer:
75.645 J
Explanation:
The kinetic energy is related to the mass and velocity by the formula ...
KE = 1/2mv²
For the given mass of 0.045 kg, and velocity of 41 m/s, the kinetic energy is ...
KE = 1/2(0.045 kg)(41 m/s)² = 75.645 J
__
The unit of energy, joule, is a derived unit equal to 1 kg·m²/s².
Answer:
True
The escape speed from the Moon is much smaller than from Earth.
Explanation:
The escape speed is defined as:
(1)
Where G is the gravitational constant, M is the mass and r is the radius.
The mass of the Earth is
and its radius is 
Then, replacing those values in equation 1 it is gotten.
For the case of the Moon:
Hence, the escape speed from the Moon is much smaller than from Earth.
Since it has a smaller mass and smaller radius compared to that from the Earth.
Answer:
130 km at 35.38 degrees north of east
Explanation:
Suppose the HQ is at the origin (x = 0, y = 0)
So the coordinates of the helicopter after the 1st flight is


After the 2nd flight its coordinate would be:


So in order to fly back to its HQ it must fly a distance and direction of
north of east
Yes the Earth is bigger than the Moon.
The moon is one-quarter the size of Earth.
Answer:
t₁ = 3 s
Explanation:
In this exercise, the vertical displacement equation is not given
y = 240 t + 16 t²
Where y is the displacement, 240 is the initial velocity and 16 is half the value of the acceleration
Let's replace
864 = 240 t + 16 t²
Let's solve the second degree equation
16 t² + 240 t - 864 = 0
Let's divide by 16
t² + 15 t - 54 = 0
The solution of this equation is
t = [-15 ± √(15 2 - 4 1 (-54)) ] / 2 1
t = [-15 ±√(225 +216)] / 2
t = [-15 + - 21] / 2
We have two solutions.
t₁ = [-15 +21] / 2
t₁ = 3 s
t₂ = -18 s
Since time cannot have negative values, the correct t₁ = 3s