<span>The quantity force multiplied by distance is work.Work is done when a force pushes something and the object moves some distance in the direction it’s being pushed.work = force x distance where distance traveled in the direction the force is pushing counts.The unit for rate of working also called as Power.</span>
Answer:
<u>a transverse wave consisting of changing electric fields and changing magnetic fields.</u>
Explanation:
An electromagnetic wave is a wave generated by the vibration of perpendicular electric and magnetic fields, which may progate through vacuum (empty space) or a material medium.
All electromagnetic waves propagate at the same speed in vacuum. This speed is approximately 3.0 × 10⁸ m/s. Which is generally referred as the speed of light, but it is the same constant speed of any electromagnetic wave in the vacuum, c.
In general, waves transfer energy when they travel, but only electromagnetic waves can travel in vacuum. The waves that cannot travel in vacuum are named mechanical waves (they need a medium to travel).
There are two types of waves depending on how they propagate: transverse waves and longitudinal waves. The transverse waves travel perperdiculary to the direcction of the vibration, while longitudinal waves travel parallel to the direction of the vibration.
The classical example of transverse waves is a rope that oscilates up and down. The classical example of longitudinal waves is a spring that you pull and push by an end and so it moves forward and back. Sound is also a longitudinal wave.
You would use all of the following except for 3. descriptive categories because, that is a qualitative observation using descriptions and not a quantitative observation using numbers.<span />
Answer:
a)V= 0.0827 m³
b)P=181.11 x 10² N/m²
Explanation:
Given that
m = 81.5 kg
Density ,ρ = 985 kg/m³
As we know that
Mass = Volume x Density
81.5 = V x 985
V= 0.0827 m³
The force exerted by weight = m g
F= m g= 81.5 x 10 = 815 N ( Take ,g= 10 m/s²)
Area ,A= 4.5 x 10⁻² m²
The Pressure P


P=181.11 x 10² N/m²