A fish pushes water backwards in order to move forward is a good example of Newton's 3rd Law.
The divisions within an atom's shell are called subshells. This means that each shell consists of several subshells that are made up of orbitals. Each orbital consists of 1 or 2 electrons. The outermost shell of an atom is what we call the valence electrons, and they are what participate in chemical bonding.
At r = 0.766 R the magnetic field intensity will be half of its value at the center of the current carrying loop.
We have a circular loop of radius ' r ' carrying current ' i '.
We have to find at what distance along the axis of the loop is the magnetic field one-half its value at the center of the loop.
<h3>What is the formula to calculate the
Magnetic field intensity due to a current carrying circular loop at a point on its axis?</h3>
The formula to calculate the magnetic field intensity due to a current carrying ( i ) circular loop of radius ' R ' at a distance ' x ' on its axis is given by -

Now, for magnetic field intensity at the center of the loop can calculated by putting x = 0 in the above equation. On solving, we get -

Let us assume that the distance at which the magnetic field intensity is one-half its value at the center of the loop be ' r '. Then -




r = 0.766R
Hence, at r = 0.766 R - the magnetic field intensity will be half of its value at the center of the current carrying loop.
To solve more questions on magnetic field intensity, visit the link below-
brainly.com/question/15553675
#SPJ4
Answer:
The electrical loads in parallel circuits each have the same voltage drop, with equals the total applied voltage of the circuit.
Explanation:
I did some research and the voltage drop across any branch of a parallel circuit is the same as the applied voltage.
Answer:
6
Explanation:
Number of lines emanate from + 5 micro coulomb is 15 .
They terminates at negative charges that means at - 3 micro coulomb and - 2 micro Coulomb.
the electric field lines terminates at - 3 micro Coulomb and - 2 micro Coulomb is in the ratio of 3 : 2.
So the lines terminating at - 3 micro coulomb
= 
So the lines terminating at - 2 micro coulomb
= 
So, the number of filed lines terminates at - 2 micro Coulomb are 6.