1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FinnZ [79.3K]
2 years ago
12

michael kicks a ball at an angle if 36* horizontal. its initial velocity is 46 m/s. Find the maximum height it can reach, total

time, and horizontal displacement for this motion
Physics
1 answer:
MAVERICK [17]2 years ago
3 0

(a) At its maximum height, the ball's vertical velocity is 0. Recall that

{v_y}^2-{v_{0y}}^2=2a_y\Delta y

Then at the maximum height \Delta y=y_{\mathrm{max}}, we have

-\left(\left(46\,\dfrac{\mathrm m}{\mathrm s}\right)\sin36^\circ\right)^2=2\left(-9.8\,\dfrac{\mathrm m}{\mathrm s^2}\right)y_{\mathrm{max}}

\implies y_{\mathrm{max}}=37\,\mathrm m

(b) The time the ball spends in the air is twice the time it takes for the ball to reach its maximum height. The ball's vertical velocity is

v_y=v_{0y}+a_yt

and at its maximum height, v_y=0 so that

0=\left(46\,\dfrac{\mathrm m}{\mathrm s}\right)\sin36^\circ+\left(-9.8\,\dfrac{\mathrm m}{\mathrm s}\right)t

\implies t=2.8\,\mathrm s

which would mean the ball spends a total of about 5.6 seconds in the air.

(c) The ball's horizontal position in the air is given by

x=v_{0x}t

so that after 5.6 seconds, it will have traversed a displacement of

x=\left(46\,\dfrac{\mathrm m}{\mathrm s}\right)\cos36^\circ(5.6\,\mathrm s)

\implies x=180\,\mathrm m

You might be interested in
Define the unit of time and unit of length​
garik1379 [7]
This is your perfect answer

The base unit for time is the second (the other SI units are: metre for length, kilogram for mass, ampere for electric current, kelvin for temperature, candela for luminous intensity, and mole for the amount of substance). The second can be abbreviated as s or sec.
7 0
2 years ago
Read 2 more answers
If 20 beats are produced within one second, which of the following frequencies could possibly be held by two sound waves traveli
NeTakaya

Answer:

D. 22 Hz and 42 Hz

Explanation:

  • When two waves with different frequency travelling in the same medium meet each other, they produce an interference pattern called beat.
  • <em><u>The frequency of the beat produced is equivalent to </u></em><em><u>the difference between the individual frequencies of the two waves involved.</u></em>
  • <em><u>Therefore; in this case since the frequency of the beat is 20 Hz, that is from 20 beats per second.</u></em>
  • We need to find a pair from the choices whose frequency difference is 20 Hz.
  • This happens to be choice D. 22 Hz and 42 Hz,  that is 42 Hz - 22 Hz = 20 Hz
8 0
3 years ago
Read 2 more answers
Where would a car traveling on a roller coaster have the most kinetic energy ? and why?
goldenfox [79]

Answer:

As the car travels up the coaster it is gaining potential energy.

Explanation:

Because It has the greatest in amount of potential energy at the top of the coaster. when the car travels down the roller coaster it obtains speed and kinetic energy.

4 0
2 years ago
Read 2 more answers
A 4.8 mF capacitor in series with a 500 Ω resistor is connected, by a switch, to a 12 V battery. The current through the resisto
ad-work [718]

Answer:

Current will be 81.7 mA

Which is not given in bellow option

Explanation:

We have given  capacitance C=4.8mF=4.8\times 10^{-3}F

Resistance R = 500 ohm

Voltage V = 12 volt

We know that time constant of RC circuit of RC circuit is given by

\tau =RC=500\times 4.8\times 10^{-3}=2.4sec

Time is given as t = 1 sec

We know that current in RC circuit is given by

i=\frac{v}{R}(1-e^{\frac{-t}{\tau }})

So current i=\frac{12}{500}(1-e^{\frac{-1}{2.4 }})=0.00817A=81.7mA

Which is not given in the following option

3 0
3 years ago
Read 2 more answers
a container of water is knocked off a 10.0 meter high ledge with a horizontal velocity of 1.00 meters/second. calculate the time
Evgen [1.6K]

Answer:

1.43 s

Explanation:

The time it takes for the container to reach the ground is determined only by the vertical motion of the container, which is a free-fall motion, so a uniformly accelerated motion with a constant acceleration of g=9.8 m/s^2 towards the ground.

The vertical distance covered by an object in free fall is given by

S=ut + \frac{1}{2}at^2

where

u = 0 is the initial vertical speed

t is the time

a= g = 9.8 m/s^2 is the acceleration

since u=0, it can be rewritten as

S=\frac{1}{2}gt^2

And substituting S=10.0 m, we can solve for t, to find the duration of the fall:

t=\sqrt{\frac{2S}{g}}=\sqrt{\frac{2(10.0 m)}{9.8 m/s^2}}=1.43 s

3 0
3 years ago
Other questions:
  • Assume that a person bouncing a ball represents a closed system. Which statement best describes how the amounts of the ball's po
    8·1 answer
  • A 5.00-a current runs through a 12-gauge copper wire (diameter 2.05 mm) and through a light bulb. copper has 8.5 * 1028 free ele
    14·2 answers
  • The rate at which light energy is radiated from a source is measured in which of the following units?
    14·2 answers
  • Is speed or velocity more helpful to a pilot?
    13·2 answers
  • If you increase the mass but leave the volume the same what happens to the density of the object
    5·1 answer
  • 20-point physics question! :D
    11·2 answers
  • How many atoms are in a molecule of C6H12O6?
    10·1 answer
  • Which of the following would have the smallest gravitational attraction between the two masses?
    8·2 answers
  • Can Someone please help me! <br><br> What is deposition
    14·2 answers
  • Some steps in mitosis are shown below in the incorrect order:
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!