Answer:
elastic force and weight are related to the acceleration of the System.
Explanation:
The relationship between these two forces can be found with Newton's second law.
- W = m a
K x - m g = m a
We see that elastic force and weight are related to the acceleration of the System.
If a harmonic movement is desired, an extra force that increases the elastic force is applied, but to begin the movement this force is eliminated, in general , if the relationship between this external and elastic force is desired, the only requirement is that it be small for harmonic movement to occur
Answer:
a) C.M 
b) 
Explanation:
The center of mass "represent the unique point in an object or system which can be used to describe the system's response to external forces and torques"
The center of mass on a two dimensional plane is defined with the following formulas:


Where M represent the sum of all the masses on the system.
And the center of mass C.M 
Part a
represent the masses.
represent the coordinates for the masses with the units on meters.
So we have everything in order to find the center of mass, if we begin with the x coordinate we have:


C.M 
Part b
For this case we have an additional mass
and we know that the resulting new center of mass it at the origin C.M
and we want to find the location for this new particle. Let the coordinates for this new particle given by (a,b)

If we solve for a we got:




And solving for b we got:

So the coordinates for this new particle are:

The ampere (A) is a basic SI unit consisting of the amount of electric charge or number of electrons that pass a point in a electrical circuit in one second. The volt (V) is the electrical potential causing electrons to move through a wire. It is a joule of energy per coulomb of charge.
1. GPE
2. KE
3. KE
4. KE
5. Both
6. Both
7. Neither
8. Neither
Alright I think these should be right ;)
Answer:
Explanation:
Given a school bus.
Let say initially the school bus is traveling with speed "v"
Let assume mass of school bus is "m"
Then, the initial kinetic energy is
K.E_initial = ½mv²
Now, if the initial velocity is tripled,
Then, the new velocity is
v_new = 3v.
Note: the mass of the school does not change it is constant
Then, new kinetic energy is
K.E_new = ½m(v_new)²
v_new = 3v
Then,
K.E_new = ½m(3v)²
K.E_new = ½m × 9v²
K.E_new = 9 × ½mv²
Since K.E = ½mv²
Then,
K.E_new = 9 × K.E
So, the new kinetic energy will be 9 times the initial kinetic energy.
So, option D is correct
D. It will be nine times greater.