Force is indirectly proportional to the distance. Therefore when the distance increases the force of attraction increases and the answer would be B
Answer:
e. The net magnetic flux in this case would be equal to zero.
Explanation:
As per Gauss law of magnetism we need to find the net magnetic flux through a closed loop
here we know that net magnetic flux is the scalar product of magnetic field vector and area vector
so here we have
= net magnetic flux
since we know that magnetic field always forms closed loop so if we find the integral over a closed loop
then in that case the value of the close integral must be zero
so correct answer would be
e. The net magnetic flux in this case would be equal to zero.
Answer:
Required charge
.

Explanation:
Given:
Diameter of the isolated plastic sphere = 25.0 cm
Magnitude of the Electric field = 1500 N/C
now
Electric field (E) is given as:

where,
k = coulomb's constant = 9 × 10⁹ N
q = required charge
r = distance of the point from the charge where electric field is being measured
The value of r at the just outside of the sphere = 
thus, according to the given data

or

or
Required charge
.
Now,
the number of electrons (n) required will be

or

or

The answer is "heat transfer."
Answer ;
Minimum required volume = 0.635m3
Maximum internal pressure = 74.35bar
Explanation:
The detailed step by step calculation using the vanderwaal's equation of state for ideal gases is as shown in the attachment.