Answer:
0.19rad/s and Yes
Explanation:
From the principle of conservation of momentum it means momentum before and after collision is the same.
Momentum before collision is 0.700 kg×12 = 8.4Ns
Momentum of the door = mass of door × velocity of door
8.4Ns = mass of door × velocity of door
Velocity of door = 8.4Ns/45 =0.19m/s
But velocity V= w×r ;
w-angular velocity
r- raduis = width
w= 0.19/1m = 0.19rad/s
2. Yes it did because it resisted The moment of inertia and ensued the locking of the door.
The acceleration of the wagon along the ground is 3.6 m/s².
To solve the problem above, we need to use the formula of acceleration as related to force and mass.
Acceleration: This can be defined as the rate of change of velocity.
⇒ Formula:
- Fcos∅ = ma................. Equation 1
⇒ Where:
- F = Force
- ∅ = angle above the horizontal
- m = mass of the wagon
- a = acceleration of the wagon
⇒ make a the subject of equation 1
- a = Fcos∅/m..................... Equation 2
From the question,
⇒ Given:
⇒ Substitute these values into equation 2
- a = 44(cos35°)/10
- a = 44(0.8191)/10
- a = 3.6 m/s²
Hence, The acceleration of the wagon along the ground is 3.6 m/s²
Learn more about acceleration here: brainly.com/question/9408577
Net force is basically the force an object has when changing direction, so the answer would be D.