Answer:
3.78 m/s
Explanation:
Recall that the formula for average speed is given by
Speed = Distance ÷ Time taken
Where,
Speed = we are asked to find this
Distance = given as 340m
Time taken = 1.5 min = 1.5 x 60 = 90 seconds
Substituting the values into the equation:
Speed = Distance ÷ Time taken
= 340 meters ÷ 90 seconds
= 3.777777 m/s
= 3.78 m/s (round to nearest hundredth)
Answer:
Initial velocity, U = 28.73m/s
Explanation:
Given the following data;
Final velocity, V = 35m/s
Acceleration, a = 5m/s²
Distance, S = 40m
To find the initial velocity (U), we would use the third equation of motion.
V² = U² + 2aS
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
35² = U + 2*5*40
1225 = U² + 400
U² = 1225 - 400
U² = 825
Taking the square root of both sides, we have;
Initial velocity, U = 28.73m/s
Answer:
Volume of given mass of gas is inversely proportional to pressure of gas
Explanation:
Boyle's law: It states that the volume of given mass of gas is inversely proportional to the pressure of gas at constant temperature.
Mathematical representation:
Suppose, a gas of mass m
T=Constant temperature
V=Volume of gas
P=Pressure of gas
Then, 
The correct answer is:
<span>C: in the protons and neutrons of an atom
In fact, the nuclear energy refers to the binding energy of the nucleons (protons and neutrons) of an atom. The protons and the neutrons are held together by the strong nuclear interaction, one of the four fundamental forces of nature, and the energy associated to this interaction is called nuclear energy.
</span>