Answer : Amoxicillin Suspension 125 mg/ 5 ml is 125 mg of Amoxicillin per 5 ml of suspension is an example of weight to volume.
Explanation :
Weight by volume (w/v) means that the mass of solute present in 100 mL volume of solution.
Weight by weight (w/w) means that the mass of solute present in 100 gram of solution.
Volume by volume (v/v) means that the volume of solute present in 100 mL volume of solution.
As per question, amoxicillin suspension is, 125 mg/ 5 ml that means 125 mg of Amoxicillin present in 5 mL of suspension. So, it is an example of weight to volume.
Hence, it is an example of weight to volume.
Answer:
C
Explanation:
Wind is geological therefore it is geological weathering
Answer:
Explanation:
The relation between frequency and wavelength is shown below as:
c is the speed of light having value
Given, Frequency = 103.4 MHz =
( as 1 MHz = 10⁶ Hz)
Thus, Wavelength is:
The rate of disappearance of chlorine gas : 0.2 mol/dm³
<h3>Further explanation</h3>
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
For reaction :

The rate reaction :
![\tt -\dfrac{1}{a}\dfrac{d[-A]}{dt}= -\dfrac{1}{b}\dfrac{d[-B]}{dt}=\dfrac{1}{c}\dfrac{d[C]}{dt}=\dfrac{1}{d}\dfrac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7Ba%7D%5Cdfrac%7Bd%5B-A%5D%7D%7Bdt%7D%3D%20-%5Cdfrac%7B1%7D%7Bb%7D%5Cdfrac%7Bd%5B-B%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bc%7D%5Cdfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bd%7D%5Cdfrac%7Bd%5BD%5D%7D%7Bdt%7D)
Reaction for formation CCl₄ :
<em>CH₄+4Cl₂⇒CCl₄+4HCl</em>
<em />
From equation, rate of reaction = rate of formation CCl₄ = 0.05 mol/dm³
Rate of formation of CCl₄ = reaction rate x coefficient of CCCl₄
0.05 mol/dm³ = reaction rate x 1⇒reaction rate = 0.05 mol/dm³
The rate of disappearance of chlorine gas (Cl₂) :
Rate of disappearance of Cl₂ = reaction rate x coefficient of Cl₂
Rate of disappearance of Cl₂ = 0.05 x 4 = 0.2 mol/dm³
<h3>
Answer:</h3>
0.0157 g Au
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.113 g Au
<u>Step 2: Identify Conversions</u>
Molar Mass of Au - 197.87 g/mol
<u>Step 3: Convert</u>
<u />
= 0.015733 g Au
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.015733 g Au ≈ 0.0157 g Au