It is because carbon dioxide traps the solar radiation which then warms up the atmosphere, not allowing the radiations to get deflected back in the outer space.. that's what is happening to our own planet the greenhouse effect.. which is also increasing the GLOBAL Temp of our planet too
When a source of light moves away from you, you see the characteristic lines in its spectrum move toward slightly longer wavelengths. Lines in the visible part of the spectrum move toward the red end.
When a source of light moves toward you, you see the characteristic lines in its spectrum move to slightly shorter wavelengths. Lines in the visible part of the spectrum move toward the violet end.
We see these 'shifts' when we look at the spectra of stars. "Red shift" is the change in the spectrum of a star when it's moving away from us, and "Blue shift" is the change when it's moving toward us. These measurements are the only way we have of measuring the radial motion of stars, and their speeds toward or away from us.
The whole subject of why a spectrum shifts toward longer or shorter wavelengths was explained by the Austrian physicist Christian Doppler in 1842, and it's known as the "Doppler Shift" in honor of him and his work.
1km=1000m; 1hr=3600secs
1km/hr=1000/3600= 5/18m/sec
To convert km/hr into m/sec, multiply the number by 5 and then divide it by 18.
18kmh-1= 18•5=90
90/18=5
5ms-1
<span>a) 13 seconds
b) 130 m/s
The formula for the distance an object moves while under constant acceleration is d = 1/2AT^2. So let's define d as 830 m, A as 9.8m/s^2, and solve for T
830 m = 1/2 9.8 m/s^2 T^2
830 m = 4.9 m/s^2 T^2
Divide both sides by 4.9 m/s^2
169.3878 s^2 = T^2
Take the square root of both sides
13.01491 s = T
Since we only have 2 significant figures, round the result to 13 seconds which is the answer to the first part of the question. To find out how fast the marble is moving, just multiply T and A together
13 s * 9.8 m/s^2 = 127.4 m/s
Since we only have 2 significant figures, round the result to 130 m/s.</span>
The question is incomplete. You dis not provide values for A and B. Here is the complete question
Light in the air is incident at an angle to a surface of (12.0 + A) degrees on a piece of glass with an index of refraction of (1.10 + (B/100)). What is the angle between the surface and the light ray once in the glass? Give your answer in degrees and rounded to three significant figures.
A = 12
B = 18
Answer:
18.5⁰
Explanation:
Angle of incidence i = 12.0 + A
A = 12
= 12.0 + 12
= 14
Refractive index u = 1.10 + B/100
= 1.10 + 18/100
= 1.10 + 0.18
= 1.28
We then find the angle of refraction index u
u = sine i / sin r
u = sine24/sinr
1.28 = sine 24 / sine r
1.28Sine r = sin24
1.28 sine r = 0.4067
Sine r = 0.4067/1.28
r = sine^-1(0.317)
r = 18.481
= 18.5⁰