Answer:
Explanation:
Using the first law of thermodynamics:
Where is the change in the internal energy of the system, in this case , is the heat tranferred, and is the work, with a negative sign since the work is done by the system.
From the previous equation we solve for heat, because it is the unknown variable in this problem
And replacing the known values:
The negative sign shows us that the heat is tranferred from the system into the surroundings.
Answer:
a.
b.
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.
At time t = 3 seconds,
<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.
For the time interval of 2 seconds,
The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,
It is the displacement of the particle in 2 seconds.
Heat required to raise the temperature of a given system is
here we know that
m = mass
s = specific heat capacity
= change in temperature
now as we know that
mass of wood = 5 kg
mass of aluminium pan = 2 kg
change in temperature = 45 - 20 = 25 degree C
specific heat capacity of wood = 1700 J/kg C
specific heat capacity of aluminium = 900 J/kg C
now here we will find the total heat to raise the temperature of both
So heat required to raise the temperature of the system is 257500 J
It would be 1.5 meters im sure form that distance to me is that nswe
Answer:
V = 0.0806 m/s
Explanation:
given data
mass quarterback = 80 kg
mass football = 0.43 kg
velocity = 15 m/s
solution
we consider here momentum conservation is in horizontal direction.
so that here no initial momentum of the quarterback
so that final momentum of the system will be 0
so we can say
M(quarterback) × V = m(football) × v (football) ........................1
put here value we get
80 × V = 0.43 × 15
V = 0.0806 m/s