1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lawyer [7]
3 years ago
15

A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass

uming the motion is vertical calculate the amplitude of the ship's motion, if the scale reading of the machine varies between limits of 55.0kg and 65.0kg.
Physics
1 answer:
STALIN [3.7K]3 years ago
8 0

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

You might be interested in
How much mass should be attached to a vertical ideal spring having a spring constant (force constant) of 39.5 n/m so that it wil
mrs_skeptik [129]
The frequency of a simple harmonic oscillator such as a spring-mass system is given by
f= \frac{1}{2 \pi}   \sqrt{ \frac{k}{m} }
where 
k is the spring constant
m is the mass attached to the spring.

Re-arranging the formula, we get:
m= \frac{k}{4 \pi^2 f^2}
and since we know the constant of the spring:
k=39.5 N/m
and the frequency of oscillation:
f=1.00 Hz
we can find the value of the mass attached to it:
m= \frac{39.5 Hz}{4 \pi^2 (1.00 Hz)^2} = 1.00 kg
7 0
3 years ago
If one light bulb burns out in a string of lights, and the rest stay lit, it is reasonable to assume that the lights are wired i
Blizzard [7]
The lights are wired in PARALLEL.

In fact, when the lights are connected in parallel, they are connected on separate branches to the source of voltage, so if one light bulb burns out, the other lights continue to work because the current continues to flow in the other branches of the circuit.

Vice-versa, if the light bulbs are connected in series, they are on the same branch This means that if one of them burns out, the circuit is open in that point, so the current cannot flow anymore and the other light bulbs turn off as well.
4 0
3 years ago
B c<br>_ - _<br>a b<br>( a=3 b=-5 c=6)​
Pachacha [2.7K]
(-5)/3 - 6/(-5)
You can solve it now :)
7 0
3 years ago
A substance did not change it's chemical nature in reaction which mostly likely describe the reaction
Ad libitum [116K]
If the substance doesn't change chemically, it is a physical reaction.
8 0
3 years ago
Determine which law is appropriate for solving the following problem.
Nostrana [21]

Charles Law

Explanation:

Step 1:

It is given that the original volume of the gas is 250 ml at 300 K temperature and 1 atmosphere pressure. We need to find the volume of the same gas when the temperature is 350 K and 1 atmosphere pressure.

Step 2:

We observe that the gas pressure is the same in both the cases while the temperature is different. So we need a law that explains the volume change of a gas when temperature is changed, without any change to the pressure.

Step 3:

Charles law provides the relationship between the gas volume and temperature, at a given pressure

Step 4:

Hence we conclude that Charles law can be used.

8 0
4 years ago
Read 2 more answers
Other questions:
  • Mechanics: design a decision tree to determine if an object is experiencing an unbalanced force, and using newton's laws of moti
    10·1 answer
  • Which statements describe how a machine can help make work easier? Select two options.
    9·1 answer
  • The bar graph below shows the number of tickets sold for each of the seating sections in a baseball stadium.
    7·2 answers
  • How long does it take for the speed of light and sound to travel around the world
    12·1 answer
  • 13. An object with a mass of 2.0 kg has a force of 4.0 newtons applied to it.
    10·1 answer
  • Why Is it summer in the Southern Hemisphere when it is winter in the northern hemisphere
    10·2 answers
  • A red racecar accelrates at a constant rate of 5 m/s2. How much time does it take to increase its speed from 50 m/s to 60 m/s?
    13·1 answer
  • Which of the following objects in motion has the highest inertia?
    6·1 answer
  • Four identical masses m are evenly spaced on a frictionless 1D track. The first mass is sent at speed v toward the other three.
    14·1 answer
  • Explain how to find the acceleration of an object that has one-dimensional horizontal motion.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!