Answer:
For n=3 and l=1=p
It is 3p-orbital.
Magnetic quantum number m
l
have values from -l to +l and total of 2l+1 values.
Forl=1, m
l
values are:
m
l
=−1,0,1 for l=1; total m
l
values =3= Number of orbitals
Each orbital can occupy maximum of two electron
Number of electrons =2×3=6
Thus 6 electrons will show same quantum number values of n=3 and l=1.
Number of elements with last electron in 3p orbitals = 6
D = m / V
d = 5.0 / 45.0
d = 0.111 g/cm³
Answer:
Evaporation
Explanation:
Evaporation involves a liquid becoming a gas and sublimation is the change of a solid directly to a gas. Phase changes require either the addition of heat energy or subtraction of heat energy .
Answer:
Copper>Steel>Aluminium
Explanation:
Hello,
Since the heat capacity accounts for the required heat to increase by 1°C, 1 kg of the metal, copper is the one that has the lower heat capacity, it means that it requires the least amount of energy to warm up (increase its temperature), this could be substantiated via the mathematical definition of heat capacity:

Solving for
:

It means that the lower the heat capacity, the higher the final temperature.
Best regards.
Answer:
the correct option would be:
The group of response options implies a reduction in the intensity of the workouts with a corresponding increase in the percentage of carbohydrate intake for several days before a competition.
Since the carbohydrate load is an increase in glycogen reserves as an energy source accompanied by a decrease in muscle demand. This is often used in high-performance activities, where strict competencies are required.
Although today some professionals do not support that, but rather support a diet with carbohydrates and proteins.
Explanation:
Carbohydrate loading increases glycogen reserves, it is accompanied by a muscle rest plan, without fatigue of muscle fibers.
The purpose of this is to exhaust the muscle fibers in maximum demands such as the competencies, ensuring a necessary energy source that supplies this reaction, for which glycogen reserves are needed.