Answer:
d. 6.0 m
Explanation:
Given;
initial velocity of the car, u = 7.0 m/s
distance traveled by the car, d = 1.5 m
Assuming the car to be decelerating at a constant rate when the brakes were applied;
v² = u² + 2(-a)s
v² = u² - 2as
where;
v is the final velocity of the car when it stops
0 = u² - 2as
2as = u²
a = u² / 2s
a = (7)² / (2 x 1.5)
a = 16.333 m/s
When the velocity is 14 m/s
v² = u² - 2as
0 = u² - 2as
2as = u²
s = u² / 2a
s = (14)² / (2 x 16.333)
s = 6.0 m
Therefore, If the car had been moving at 14 m/s, it would have traveled 6.0 m before stopping.
The correct option is d
Answer:
decreases
Explanation:
Remeber:
There is always inverse relation between frequency and wavelength.
So if one of them increases, other decreases and vice-versa.
f ∝ 1 / λ
The electric eel generates large electric currents by way of a highly specialized nervous system that has the capacity to synchronize the activity of disc-shaped, electricity-producing cells packed into a specialized electric organ. Hope this helps!! Good luck
Answer:
Angular speed ω=3771.4 rad/min
Revolution=5921 rpm
Explanation:
Given data

To find
Angular speed ω
Revolution per minute N
Solution
First we need to convert the speed of truck to inches per mile
as
1 mile=63360 inches
1 hour=60 minutes
so

Now to solve for angular speed ω by substituting the speed v and radius r in below equation

To solve for N(revolutions per minute) by substituting the angular speed ω in the following equation