Answer:
I=V/R
so larger bsttery or small resistor can increase the current value.
A. True
if cold air is replacing warm air it is a cold front and vice versa.
A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds
Answer:
A 1.0 min
Explanation:
The half-life of a radioisotope is defined as the time it takes for the mass of the isotope to halve compared to the initial value.
From the graph in the problem, we see that the initial mass of the isotope at time t=0 is
The half-life of the isotope is the time it takes for half the mass of the sample to decay, so it is the time t at which the mass will be halved:
We see that this occurs at t = 1.0 min, so the half-life of the isotope is exactly 1.0 min.
<h2>
Hey There!</h2><h2>
_____________________________________</h2><h2>
Answer:</h2><h2 /><h2>
</h2><h2>
_____________________________________</h2>
<h2>DATA:</h2>
mass = m = 2kg
Distance = x = 6m
Force = 30N
TO FIND:
Work = W = ?
Velocity = V = ?
<h2>
SOLUTION:</h2>
According to the object of mass 2 kg travels a distance when the force was exerted on it. The graph between the Force and position was plotted which shows that 30 N of force was used to push the object till the distance of 6.0m.
To find the work, I will use the method of determining the area of the plotted graph. As the graph is plotted in the straight line between the Force and work, THE PICTURE ATTCHED SHOWS THE AREA COVERED IN BLUE AS WORK DONE AND HEIGHT AS 30m AND DISTANCE COVERED AS 6m To solve for the area(work) of triangle is given as,
Base is the x-axis of the graph which is Position i.e. 6m
Height is the y-axis of the graph which is Force i.e. 30N
So,
W = 90 J
The work done is 90 J.
According to the principle of work and kinetic energy (also known as the work-energy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle.
<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2>