Answer:
The mass of the ball is 0.23 kg
Explanation:
Given that
radius ,r= 3.74 cm
Density of the milk ,ρ = 1.04 g/cm³ = 1.04 x 10⁻³ kg/cm³
Normal force ,N= 9.03 x 10⁻² N
The volume of the ball V


V= 219.13 cm³
The bouncy force on the ball = Fb
Fb = ρ V g
Fb + N = m g
m=Mass of the ball = Density x volume
m = γ V , γ =Density of the Ball
ρ V g + N = γ V g ( take g= 10 m/s²)


γ = 0.00108 kg/cm³
m = γ V
m = 0.00108 x 219.13
m= 0.23 kg
The mass of the ball is 0.23 kg
Answer:
Epx= - 21.4N/C
Epy= 19.84N/C
Explanation:
Electric field theory
The electric field at a point P due to a point charge is calculated as follows:
E= k*q/r²
E= Electric field in N/C
q = charge in Newtons (N)
k= electric constant in N*m²/C²
r= distance from load q to point P in meters (m)
Equivalences
1nC= 10⁻⁹C
known data
q₁=-2.9nC=-2.9 *10⁻⁹C
q₂=5nC=5 *10⁻⁹C
r₁=0.840m



Calculation of the electric field at point P due to q1
Ep₁x=0

Calculation of the electric field at point P due to q2


Calculation of the electric field at point P(0,0) due to q1 and q2
Epx= Ep₁x+ Ep₂x==0 - 21.4N/C =- 21.4N/C
Epy= Ep₁y+ Ep₂y=36.95 N/C-17.11N =19.84N/C
False. They have same magnitude and opposite direction but they never cancel as each of them does the action on the other body, and for the forces to cancel out they need to act ob the same body.
Hope this helps!
kinetic energy is Movement energy
think of it like the Xbox Kinect
Answer:
The wave speed is calculated below:
Explanation:
Given,
number of waves passed per minute = 8
time period = 1 minute = 60 s
distance between successive wave crests = 20 m
waves passing interval per second =

Now,
wave speed = 20 m ×

=
m/s
= 2.67 m/s
Hence the wave speed is 2.67 m/s.