Answer: There are
molecules in 63.00 g of 
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1 mole of
contains =
molecules
Thus 3.5 moles of
contains =
molecules.
There are
molecules in 63.00 g of 
In a flashlight, the electrical energy becomes light energy and thermal energy in the bulb.
*Go into solution
*Break down
*Liquefy
*Disintegrate
*Melt away
*Evaporate
*Dissapear
Hope it helps! Brainliest answer, PLZ? :)
Answer: 8.38 seconds
Explanation:
Integrated rate law for second order kinetics is given by:
= initial concentartion = 0.860 M
a= concentration left after time t = 0.230 M
k = rate constant =
Thus it will take 8.38 seconds for the concentration of A to decrease from 0.860 M to 0.230 M .