Answer:
It grows
Explanation:
The blacks holes will absorb
Me hoizontally stretching me like a noodle by the spaghtification process,thus growing bigger.
Answer:
a) f=0.1 Hz ; b) T=10s
c)λ= 36m
d)v=3.6m/s
e)amplitude, cannot be determined
Explanation:
Complete question is:
Determine, if possible, the wave's (a) frequency, (b) period, (c) wavelength, (d) speed, and (e) amplitude.
Given:
number of wave crests 'n'= 5
pass in a time't' 54.0s
distance between two successive crests 'd'= 36m
a) Frequency of the waves 'f' can be determined by dividing number of wave crests with time, so we have
f=n/t
f= 5/ 54 => 0.1Hz
b)The time period of wave 'T' is the reciprocal of the frequency
therefore,
T=1/f
T=1/0.1
T=10 sec.
c)wavelength'λ' is the distance between two successive crests i.e 36m
Therefore, λ= 36m
d) speed of the wave 'v' can be determined by the product of frequency and wavelength
v= fλ => 0.1 x 36
v=3.6m/s
e) For amplitude, no data is given in this question. So, it cannot be determined.
Answer:
Explanation:
The two major defects of simple electric cells causes current supplied to be for short time. These defects are: polarization and local action.
a. Polarization: This is a defect caused by an accumulation of hydrogen bubbles at the positive electrode of the cell. It can be prevented by the use of vent, using a hydrogen absorbing material or the use of a depolarizer.
b. Local Action: This is the gradual wearing away of the electrode due to impurities in the zinc plate. It can be controlled by the amalgamation of the zinc plate before it is used.
Top left: slowing down
Top right: not moving
Bottom left: moving at a constant speed
Bottom right: speeding up
Answer:
Explanation:
You can approach an expression for the instantaneous velocity at any point on the path by taking the limit as the time interval gets smaller and smaller. Such a limiting process is called a derivative and the instantaneous velocity can be defined as.#3
For the special case of straight line motion in the x direction, the average velocity takes the form: If the beginning and ending velocities for this motion are known, and the acceleration is constant, the average velocity can also be expressed as For this special case, these expressions give the same result. Example for non-constant acceleration#1