Answer:
0.75 m³/s
Explanation:
Applying,
Q = vA.................... Equation 1
Where Q = flow rate of the water, v = velocity of the water, A = area of the pipe.
From the question,
Given: v = 2.5 m/s, A = 0.3 m²
Substitute these values into equation 1
Q = 2.5(0.3)
Q = 0.75 m³/s
Hence the flow rate of water in the pipe is 0.75 m³/s
Answer:
the minimum thickness the soap film can be if it is surrounded by air is 85.74 nm
Explanation:
Given the data in the question;
wavelength of light; λ = 463 nm = 463 × 10⁻⁹ m
Index of refraction; n = 1.35
Now, the thinnest thickness of the soap film can be determined from the following expression;
= ( λ / 4n )
so we simply substitute in our given values;
= ( 463 × 10⁻⁹ m ) / 4(1.35)
= ( 463 × 10⁻⁹ m ) / 5.4
= ( 463 × 10⁻⁹ m ) / 4(1.35)
= 8.574 × 10⁻⁸ m
= 85.74 × 10⁻⁹ m
= 85.74 nm
Therefore, the minimum thickness the soap film can be if it is surrounded by air is 85.74 nm
Answer:
The magnitude of the force per unit length is 2.145 x 10⁻⁵ N/m and the direction of the force is outward or repulsive since the current in the two parallel wires are flowing in opposite direction.
Explanation:
Given;
distance between the parallel wires, r = 5.0 cm = 0.05 m
current in the first wire, I₁ = 1.65 A
current in the second wire, I₂ = 3.25 A
The magnitude of the force per unit length between the two wires is calculated as follows;

Therefore, the magnitude of the force per unit length is 2.145 x 10⁻⁵ N/m and the direction of the force is outward or repulsive since the current in the two parallel wires are flowing in opposite direction.
Answer:
The direction of current in the second wire will be upward.
Explanation:
We first need to find the direction of the magnetic field due to the first wire using the right-hand thumb rule.
Knowing that, one can easily find the direction of the second wire by using the right-hand rule.
The force per unit length on wire 2 due to wire 1 is given by,

Therefore,

<em>Image attached for better understanding of the problem.</em>
<em>(Source: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/wirfor.html)</em>