Answer:
Option A
Explanation:
At segment T-U, the substance changes from a liquid to a gas and does not change temperature.
The reason is because latent heat of vaporisation allows for the absorption of heat in the change of state and temperature remains constant until it has fully changed state.
We are given:
v0 = initial velocity = 18 km/h
d = distance = 4 km
v = final velocity = 75 km/h
a =?
<span>
We can solve this problem by using the formula:</span>
v^2 = v0^2 + 2 a d
75^2 = 18^2 + 2 (a) * 4
5625 = 324 + 8a
<span>a = 662.625 km/h^2</span>
Refer to the diagram shown below.
The given data is
mass, kg Coordinates. m
------------- -----------------
2 (0, 0)
2 (2, 0)
4 (2, 1)
Total mass, M = 2+2+4 = 8kg
Let (x,y) be the coordinates of M.
Then, taking moments about the origin, we obtain
8x = 2*0 + 2*2 + 4*2 = 12
x = 1.5 m
8y = 2*0 + 2*0 + 4*1 = 4
y = 0.5 m
Answer: (1.5, 0.5) m
Answer:
Option (A) , (b) and (d) are correct option
Explanation:
According to Coulomb's law electric force between two charges is given by

From the relation we can say that force is directly proportional to magnitude of charges and inversely proportional to distance between them '
So if we increase the distance then force will decrease
Increase if any of the charge get larger
If force is attractive then both the charge will be of different sign and is force is repulsive then both the charges of same sign
From above conclusion we can say that (a), (b) and (d) are correct option
Answer:
the speed after 3 seconds is 10 m/s
Explanation:
The computation of the speed is shown below:
As we know that
V = U + at
Here,
U = 34 m/s
a = - 8 m/s²
t = 3 Sec
V = velocity after 3 sec
V = 34 + (-8)3
= 34 - 24
V = 10 m/s
Hence, the speed after 3 seconds is 10 m/s