As the centripetal force<span> acts upon an </span>object moving <span>in a </span>circle<span> at constant speed, the </span>force<span> always acts inward as the velocity of the </span>object<span> is directed tangent to the </span>circle. ... In fact, whenever the unbalanced centripetal force<span> acts perpendicular to the direction of </span>motion<span>, the speed of the </span>object will<span> remain constant.</span>
<h2><u>
Answer:</u></h2>
<u></u>
<u>Force = kgm/s² ⟶ Newton</u>
<h2><u>
Explanation:</u></h2>
<u></u>
According to the formula we've learnt,
- Force = mass × acceleration.
To find force in terms of base units, we must first identify the base SI units of mass & acceleration.
- Base SI unit of mass = kg (kilogram)
- Base SI unit of acceleration = m/s² (meter per second squared)
So, the base unit of force is,
- Force = mass × acceleration.
- <u>Force = kgm/s² ⟶ Newton</u>
________________
Hope it helps!

So, the force of gravity that the asteroid and the planet have on each other approximately 
<h3>Introduction</h3>
Hi ! Now, I will help to discuss about the gravitational force between two objects. The force of gravity is not affected by the radius of an object, but radius between two object. Moreover, if the object is a planet, the radius of the planet is only to calculate the "gravitational acceleration" on the planet itself,does not determine the gravitational force between the two planets. For the gravitational force between two objects, it can be calculated using the following formula :

With the following condition :
- F = gravitational force (N)
- G = gravity constant ≈
N.m²/kg²
= mass of the first object (kg)
= mass of the second object (kg)- r = distance between two objects (m)
<h3>Problem Solving</h3>
We know that :
- G = gravity constant ≈
N.m²/kg²
= mass of the planet X =
kg.
= mass of the planet Y =
kg.- r = distance between two objects =
m.
What was asked :
- F = gravitational force = ... N
Step by step :





<h3>Conclusion</h3>
So, the force of gravity that the asteroid and the planet have on each other approximately

<h3>See More</h3>
Answer:
The ball experiences the greater momentum change
Explanation:
The momentum change of each object is given by:

where
m is the mass of the object
v is the final velocity
u is the initial velocity
Both objects have same mass m and same initial velocity u. So we have:
- For the ball, the final velocity is

Since it bounces back (so, opposite direction --> negative sign) with same speed (so, the magnitude of the final velocity is still u). So the change in momentum is

- For the clay, the final velocity is

since it sticks to the wall. So, the change in momentum is

So we see that the greater momentum change (in magnitude) is experienced by the ball.
Supposedly there is life on Mars but it’s early to say for sure