0.118 m is the distance between the two protons.
Mass of proton = 1.6726 × 10⁻²⁷ kg
Weight of proton= 1.6726 × 10⁻²⁷ x 9.81 N
= 1.6408 × 10⁻²⁶ N
Charge of proton = 1.602 × 10⁻²⁹ C
The force between two protons = kq²/r² where, K is a proportionality
constant, q is a charge of proton and
r is the distance between two protons.
= 9 × 10⁹ × (1.602×10⁻¹⁹)²/r²
To calculate distance :
Weight of proton= Force between protons
⇒ 1.6408 × 10⁻²⁶ N = 9 × 10⁹ × (1.602×10⁻¹⁹)²/r²
⇒ r = 0.118m
Therefore, 0.118 m is the distance between the two protons.
Learn more about electrostatic force here:
brainly.com/question/18108470
#SPJ4
Power = (voltage) x (current). The motor consumes (12)x(206)=2,472 watts. Some of it is dissipated as heat, but most of it is used to do useful work by turning the engine over to make it start.
The british won the Battle of Barren Hill :)
Answer:
The correct solution is "37.5 km".
Explanation:
Given:
Distance between the trains,
d = 75 km
Speed of each train,
= 15 km/h
The relative speed will be:
=
= 
The speed of the bird,
V = 15 km/h
Now,
The time taken to meet will be:



hence,
The distance travelled by the bird in 2.5 h will be:
⇒ 


Most plastics have refractive indices in the range from 1.3 to 1.7, but some high-refractive-index polymers can have values as high as 1.76. For infrared light refractive indices can be considerably higher. Germanium is transparent in the wavelength region from 2 to 14 µm and has a refractive index of about 4.