The coordinates are- <span>RA 19° 24' 0" | Dec 59° 0.000'
It is located in the asteroid belt between mars and jupiter :)
</span><span>
</span>
Answer:
the answer would be "using more heat" btw
Explanation:
Answer:
a.) a = 0 ms⁻²
b.) a = 9.58 ms⁻²
c.) a = 7.67 ms⁻²
Explanation:
a.)
Acceleration (a) is defined as the time rate of change of velocity
Given data
Final velocity = v₂ = 0 m/s
Initial velocity = v ₁ = 0 m/s
As the space shuttle remain at rest for the first 2 minutes i.e there is no change in velocity so,
a = 0 ms⁻²
b.)
Given data
As the space shuttle start from rest, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 8 min = 480 s
By the definition of Acceleration (a)

a = 9.58 ms⁻²
c.)
Given data
As the space shuttle is at rest for first 2 min then start moving, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 10 min = 600 s
By the definition of Acceleration (a)

a = 7.67 ms⁻²
Photovoltaic cells are the most efficient means of converting solar energy to electricity. Option b is correct.
<h3>What is a cell?</h3>
A cell is a voltage and current-producing device that consists of a single anode and cathode separated by an electrolyte.
One or more cells can make up a battery. One cell, for example, is one AA battery.
Light intensity on a solar cell is often measured in "suns," with one sun roughly equivalent to 1 kW/m².
Concentrated sunlight improves the ratio of current generated while the device is lighted vs when it is dark, hence enhancing output voltage and efficiency.
Photovoltaic cells are the most efficient means of converting solar energy to electricity.
Hence, option b is correct.
To learn more about the cell refer to:
brainly.com/question/3142913
#SPJ1
Angry sound level = 70 db
Soothing sound level = 50 db
Frequency, f = 500 Hz
Assuming speed of sound = 345 m/s
Density (assumed) = 1.21 kg/m^3
Reference sound intensity, Io = 1*10^-12 w/m^2
Part (a): Initial sound intensity (angry sound)
10log (I/Io) = Sound level
Therefore,
For Ia = 70 db
Ia/(1*10^-12) = 10^(70/10)
Ia = 10^(70/10)*10^-12 = 1*10^-5 W/m^2
Part (b): Final sound intensity (soothing sound)
Is = 50 db
Therefore,
Is = 10^(50/10)*10^-12 = 18*10^-7 W/m^2
Part (c): Initial sound wave amplitude
Now,
I (W/m^2) = 0.5*A^2*density*velocity*4*π^2*frequency^2
Making A the subject;
A = Sqrt [I/(0.5*density*velocity*4π^2*frequency^2)]
Substituting;
A_initial = Sqrt [(1*10^-5)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-8 m = 69.7 nm
Part (d): Final sound wave amplitude
A_final = Sqrt [(1*10^-7)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-9 m = 6.97 nm