Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)
Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)
Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)
Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)
Explanation:
As wine and cheese are consumed together,it means that they both are complimentary goods.
As per law of demand,the fall in price of a complimentary good would increase the demand and shift the demand curve of the other to the right.
The equilibrium quantity of cheese would increase and shift to right when the price of wine falls.
#1.
<em>Car </em>1<em> weighs </em>300 kilograms<em> and is moving right at </em>3 meters per second (m/s)
#2.
Law of conservation of momentum
momentum before collorion = momentim after collosion
MV + mv = MV' + mv'
1500x25+ 1000x5
37500 + 15000
Answer:
solution
we know that .
s=ut+½at²
now, putting the values in the second equation of motion ,
we get,
S=20×10+1/2×(10)²
S=200+1×100
S=200+100
S=300m
the distance covered by given body or object in 10 seconds is 300 m.