1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KATRIN_1 [288]
4 years ago
6

A spacecraft of mass 1500 kg orbits the earth at an altitude of approximately 450 km above the surface of the earth. Assuming a

circular orbit, what is the attractive force that the earth exerts to keep the spacecraft+ in orbit? Answer: (a) 1.28x 10^7 (N) (b) 2.99 x 10^7 (N) (c) 3.56 x 10^7 (N). (d) 4.11 x 10^7 (N) (e) 5.06x 10^7 (N)
Physics
1 answer:
PSYCHO15rus [73]4 years ago
8 0

Answer:

1.28 x 10^4 N

Explanation:

m = 1500 kg, h = 450 km, radius of earth, R = 6400 km

Let the acceleration due to gravity at this height is g'

g' / g = {R / (R + h)}^2

g' / g = {6400 /  (6850)}^2

g' = 8.55 m/s^2

The force between the spacecraft and teh earth is teh weight of teh spacecraft

W = m x g' = 1500 x 8.55 = 1.28 x 10^4 N

You might be interested in
2. Compare and Contrast A fault cuts through
Elenna [48]

Explanation:

The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts through. The fault labeled "E" cuts through all three sedimentary rock layers (A, B,and C) and also cuts through the intrusion (D). So the fault must be the youngest formation that is seen and known of.

6 0
3 years ago
What is true about energy that is added to a closed system?
Setler [38]

The correct answer is B

6 0
3 years ago
Read 2 more answers
What are the average velocity and average acceleration of the tip of a 2.4 cm long hour hand of a clock?
ra1l [238]
A circle has a revolution of 360°. Since there are 12 hour markings, each hour interval has an angle of 30°. In radians, that would be equal to π/6 radians. So, in every 1 hour that passes, it covers π/6 of an angle. So, the angular velocity denoted as ω is π/6 ÷ 1 hour = π/6 rad/h. We can compute the average linear velocity, v, from the relationship:

v = rω, where r is the radius of the circle which is the length of the hour hand
v = (2.4 cm)(π/6 rad/h)
v = 1.257 cm/hour

Therefore, the average velocity is 1.257 cm per hour.

For the average acceleration, it is equal to zero. The hands of the clock move at a constant velocity. Since acceleration is the change of velocity per unit time, there is no change of velocity because it's constant. That's why it is zero.

8 0
3 years ago
What is elasticity in polymer generally related to?
Andrej [43]
The elasticity of a polymer is primarily due to the structure of the molecule and the cross-linking between strands. Hydrogen bonding is a contributor to the shape of the molecule, but not a major player in terms of elasticity. We would have to answer "false".
<span>
</span>
6 0
3 years ago
Read 2 more answers
Help meh in this question plzzz <br>​
iragen [17]

The Moment of Inertia of the Disc is represented by I = \frac{15}{32}\cdot M\cdot R^{2}. (Correct answer: A)

Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:

I = I_{D} - I_{H} (1)

Where:

  • I_{D} - Moment of inertia of the Disk.
  • I_{H} - Moment of inertia of the Hole.

Then, this formula is expanded as follows:

I = \frac{1}{2}\cdot M\cdot R^{2} - \frac{1}{2}\cdot m\cdot \left(\frac{1}{2}\cdot R^{2} \right) (1b)

Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole (m):

\frac{m}{M} = \frac{R^{2}}{4\cdot R^{2}}

m = \frac{1}{2}\cdot M

And the resulting equation is:

I = \frac{1}{2}\cdot M\cdot R^{2} -\frac{1}{2}\cdot \left(\frac{1}{4}\cdot M \right) \cdot \left(\frac{1}{4}\cdot R^{2} \right)

I = \frac{1}{2} \cdot M\cdot R^{2} - \frac{1}{32}\cdot M\cdot R^{2}

I = \frac{15}{32}\cdot M\cdot R^{2}

The moment of inertia of the Disc is represented by I = \frac{15}{32}\cdot M\cdot R^{2}. (Correct answer: A)

Please see this question related to Moments of Inertia: brainly.com/question/15246709

5 0
3 years ago
Other questions:
  • A table of the visible light spectrum is shown below. A 2 column table with 6 rows. The first column is labeled color with entri
    5·1 answer
  • The velocity component with which a projectile covers certain horizontal distance is maximum at the moment of? a) Hitting the gr
    15·1 answer
  • Describe the role of minerals in the formation of rocks
    8·1 answer
  • Areas near baton rouge louisiana recently received 36.2 cm of rain in a single day. how many meters of rain was this?
    5·2 answers
  • When a wire loop is connected to a battery, ______ is produced in the loop
    15·2 answers
  • Which one of the following statements concerning kinetic energy is true? a The kinetic energy of an object always has a positive
    10·1 answer
  • Help plzzzzzzz<br><br><br><br>-it's not physics I couldn't put science
    6·1 answer
  • Help in physics please :(((​
    9·1 answer
  • URGENT!!!!!!!<br><br> PLEASE HELP WITH THIS PHYSICS PROBLEM
    13·1 answer
  • Balls and rods set up to represent a solar system
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!