Answer:
10.337m/s2
Explanation:
F=ma
a=F/m
a = 92 / 8.9 = 10.337m/s2
The atomic mass of this question is 10.811
Answer:
3.44 rad
Explanation:
The rotational kinetic energy change of the disk is given by ΔK = 1/2I(ω² - ω₀²) where I = rotational inertia of solid sphere = MR²/2 where m = mass of solid disk = 4 kg and R = radius of solid disk = 4 m, ω₀ = initial angular speed of disk = 0 rad/s (since it starts from rest) and ω = final angular speed of disk
Since the kinetic energy is increasing at a rate of 21 J/s, the increase in kinetic energy in 3.3 s is ΔK = 21 J/s × 3.3 s = 69.3 J
So, ΔK = 1/2I(ω² - ω₀²)
Since ω₀ = 0 rad/s
ΔK = 1/2I(ω² - 0)
ΔK = 1/2Iω²
ΔK = 1/2(MR²/2)ω²
ΔK = MR²ω²/4
ω² = (4ΔK/MR²)
ω = √(4ΔK/MR²)
ω = 2√(ΔK/MR²)
Substituting the values of the variables into the equation, we have
ω = 2√(ΔK/MR²)
ω = 2√(69.3 J/( 4 kg × (4 m)²))
ω = 2√(69.3 J/[ 4 kg × 16 m²])
ω = 2√(69.3 J/64 kgm²)
ω = 2√(1.083 J/kgm²)
ω = 2 × 1.041 rad/s
ω = 2.082 rad/s
The angular displacement θ is gotten from
θ = ω₀t + 1/2αt² where ω₀ = initial angular speed = 0 rad/s (since it starts from rest), t = time of rotation = 3.3 s and α = angular acceleration = (ω - ω₀)/t = (2.082 rad/s - 0 rad/s)/3.3 s = 2.082 rad/s ÷ 3.3 s = 0.631 rad/s²
Substituting the values of the variables into the equation, we have
θ = ω₀t + 1/2αt²
θ = 0 rad/s × 3.3 s + 1/2 × 0.631 rad/s² (3.3 s)²
θ = 0 rad + 1/2 × 0.631 rad/s² × 10.89 s²
θ = 1/2 × 6.87159 rad
θ = 3.436 rad
θ ≅ 3.44 rad
Answer : The correct option is, (d) 4 times
Solution :
According to the Coulomb's law, the electrostatic force of attraction or repulsion between two charges is directly proportional to the product of the charges and is inversely proportional to the square of the distance between the the charges.
Formula used :

where,
F = electrostatic force of attraction or repulsion
= Coulomb's constant
and
are the charges
r = distance between two charges
First we have to calculate the force exerted between S and q when the distance between the charge is 1 unit and let us assumed that the charge be 'q'
..........(1)
Now we have to calculate the force exerted between S and p when the distance between the charge is 2 unit at the same charge.
...........(2)
Equation equation 1 and 2, we get


Therefore, the force exerted between S and q is 4 times the force exerted between S and p.
Without the ability to measure, it would be difficult for scientists to conduct experiments or form theories. Not only is measurement important in science and the chemical industry, it is also essential in farming, engineering, construction, manufacturing, commerce, and numerous other occupations and activities.