Answer: C) Either benzene or oxygen may limit the amount of product that can be formed
Explanation: Benzene and oxygen are the reactants of the equation. What type and the amount of reactants there are in a chemical reaction affects the outcome. Therefore, seeing as benzene and oxygen are the reactants, the answer is C).
Answer: B) 4.2 M
Explanation:
Molarity = moles of solute/litre of solution
1560mL/1000 = 1.56 litres
6.5/1.56 = x/1
x = 4.2
M of solution = 4.2
Answer:
Differences between Orbit and Orbitals
Orbit
An orbit is the simple planar representation of an electron.
It can be simply defined as the path that gets established in a circular motion by revolving the electron around the nucleus
The shape of molecules cannot be explained by an orbit as they are non-directional by nature.
An orbit that is well-defined goes against the Heisenberg principle.
Orbital
An orbital refers to the dimensional motion of an electron around the nucleus in a three-dimensional motion.
An orbital can simply be defined as the space or the region where the electron is likely to be found the most.
The shapes of the molecules can be found out as they are directional by nature.
An ideal orbital agrees with the theory of Heisenberg’s Principles.
Your answer is B and the element is Carbon
So what your looking for is matching isotopes. Isotopes are elements that are the same in amount of protons but different in mass meaning different number in neutrons. Because when you add the total protons and neutrons together you get your atomic mass. So this can be written as X=said element, top number above=different atomic mass, bottom number below=atomic number. Hope this help!!
Be careful because answer A has same masses but different atomic numbers so different atoms(elements)!!!
Answer:


Explanation:
Hello,
In this case, we can compute the energy by using the following formula for air:

Whereas the moles of air are computed via the ideal gas equation at room temperature inside the 5.5m x 6.5m x 3.0m-room:

Now, we are able to compute heat, by considering that the temperature raise is given in degree Celsius or Kelvins as well:

Finally, we compute the time required for the heating by considering the heating rate and the required heat, shown below:

Regards.