Conservation of momentum: total momentum before = total momentum after
Momentum = mass x velocity
So before the collision:
4kg x 8m/s = 32
1kg x 0m/s = 0
32+0=32
Therefore after the collision
4kg x 4.8m/s = 19.2
1kg x βm/s = β
19.2 + β = 32
Therefore β = 12.8 m/s
Answer:
25J
Explanation:
Given parameters:
Mass of the dog = 10kg
Speed of the dog = 5m/s
Unknown:
The minimum energy required to stop the dog = ?
Solution:
The dog is moving with a kinetic energy and to stop the dog, an equal amount of kinetic energy generated must be applied to the dog.
To find the kinetic energy;
K.E =
m v²
m is the mass
v is the velocity
Now insert the parameters and solve;
K.E =
x 10 x 5 = 25J
Your answer is 3 ( 1 calcium atom and 2 bromine atoms)
Answer: electric field
Explanation: when a charge is placed in space, it alters the space around it by creating an electric field.
This electric field has the ability to exert a force (f) on any test charge(q) placed within this vicinity.
This is the reason why a charge can either attract or repel another charge.
Using the count data and observational data you acquired, calculate the number of CFUs in the original sample