First we need to convert the angular speed from rpm to rad/s. Keeping in mind that


the angular speed is

And so now we can calculate the tangential speed of the child, which is the angular speed times the distance of the child from the center of the motion:
Answer:
Explanation:
Given that,
Frequency of radio signal is
f = 800kHz = 800,000 Hz.
Distance from transmitter
d = 8.5km = 8500m
Electric field amplitude
E = 0.9 V/m
The average energy density can be calculated using
U_E = ½•ϵo•E²
Where ϵo = 8.85 × 10^-12 F/m
Then,
U_E = ½ × 8.85 × 10^-12 × 0.9²
U_E = 3.58 × 10^-12 J/m²
The average electromagnetic energy density is 3.58 × 10^-12 J/m²
Answer:
a) 
b) 
c) 
Explanation:
Given masses:


Velocity of mass 1, 
Velocity of mass 2, 
a)
Initial momentum:



b)
magnitude of initial momentum:


From the conservation of momentum:



is the magnitude of final velocity.
Direction of final velocity will be in the direction of momentum:




c)
Vertical component of final velocity:


Answer:
<h3>The answer is 19,800 J</h3>
Explanation:
The work done by an object can be found by using the formula
<h3>workdone = force × distance</h3>
From the question
force = 120 N
distance = 165 m
We have
work done = 120 × 165
We have the final answer as
<h3>19,800 J</h3>
Hope this helps you
Answer:
b) Distance covered before stopping.
Explanation:
If you want to find the distance d required to come to a stop starting at some initial speed v, with braking acceleration a, use the kinematic relation
vf2 - vi2 = 2ad
vi = initial speed at the moment braking begins = v
vf = final speed = 0 (comes to a full stop)
-v2 = 2ad
d = -v2/(2a)