Answer:
1 second later the vehicle's velocity will be:

5 seconds later the vehicle's velocity will be:

Explanation:
Recall the formula for the velocity of an object under constant accelerated motion (with acceleration "
"):

Therefore, in this case
and 
so we can estimate the velocity of the vehicle at different times just by replacing the requested "t" in the expression:

Thank you for posting
your question here at brainly. Feel free to ask more questions.
<span><span>The
best and most correct answer among the choices provided by the question is </span>B.-2.71 V.</span>
Mg2+(aq) + 2e- -> Mg(s) E=-2.37 V
Cu2+(aq) + 2e- -> Cu(s) E =+ 0.34 V
Since Cu is acting as the anode, the equation needs to be
reversed.
Cu(s) -> Cu2+(aq) + 2e- E =- 0.34 V
Ecell= -2.37 V+ (- 0.34 V) = -2.71 V
<span><span>
</span><span>Hope my answer would be a great help for you. </span> </span>
<span> </span>
The initial speed of car A is 15.18 m/s.
Momentum is defined as mass in motion. If there are two objects (the two objects in motion or only one object in motion and the other in stationary) that collide and no other forces work in the system, the law of momentum conservation applies in the system.
p=p'
pa+pb = pa'+pb'
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
- ma = mass of object A (kg) = 1,783 kg
- mb = mass of object B (kg) = 1,600 kg
- va = speed of object A before collides (m/s)
- va' = speed of object A after collides (m/s) = 8 m/s
- vb = speed of object B before collides (m/s) = 0 m/s
- vb' = speed of object B after collides (m/s) = 8 m/s
- p = momentum before collision (Ns)
- p' = momentum after collision (Ns)
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
(1,783×va) + (1,600×0) = (1,783×8) + (1,600×8)
(1,783×va) + 0 = 14,264+12,800
(1,783×va) = 27,064

va = 15.18 m/s
Learn more about The law of momentum conservation here: brainly.com/question/7538238
#SPJ4