I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s². The solutions would be completely different if the same scenario were to play out in other places.
A ball is thrown upward with a speed of 40 m/s. Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.
So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.
Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip. After another 4.08 seconds, the ball has returned to the height of the hand which flung it. In total, the ball is in the air for <em>8.16 seconds</em> up and down.
Answer:
33.33 m/sec
Explanation:
A baseball travels 200 metes in 6 seconds,
what is the baseball’s velocity?
use the formula: velocity = distance over time
where (d) distance = 200 m
and (t) time = 6 sec.
plugin values into the formula:
v = d / t
= 200 m / 6 sec
= 33.33 m/sec.
therefore, the baseball's velocity is 33.33 m/sec
I think its B B)Warm water rises and cold water moves in to replace it.
Answer:
because speed is the modulus of velocity which is a vector
the velocity to be zero it must be a round trip
Explanation:
This is because speed is the modulus of velocity which is a vector.
For the velocity to be zero it must be a round trip, therefore the resulting vector zero
On the other hand, the speed of the module is the same in both directions
i can <u>when do u need it by</u> working on it now!!!