Answer:
(molecular) 3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
(ionic) 3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
(net ionic) 3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Explanation:
The molecular equation includes al the species in the molecular form.
3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
The ionic equation includes all the ions (species that dissociate in water) and the species that do not dissociate in water.
3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the species that do not dissociate in water. In does not include <em>spectator ions</em>.
3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
To find pH, use the following formula ---> pH= - log [H+]
so first we need to calculate the [H+] concentration using the OH concentration. to do this, we need to use this formula--> 1.0x10-14= [H+] X [OH-], so we solve for H+ and plug in
[H+]= 1.0X10-14/[OH-]---> 1.0 x 10-14/ 1.0 x 10-4= 1.0 x 10-10
now that we have the H+ concentration, we can solve of pH
pH= -log (1.0x10-10)= 10
answer is A
Ba²⁺ + 2Cl⁻ + 2H⁺ + SO₄²⁻ = BaSO₄ (precipitate) + 2H⁺ + 2Cl⁻
Ba²⁺ + SO₄²⁻ = BaSO₄
Answer:
PV=nRT where P=pressure in atm, V=volume is liters, n=numbber of moles, R=gas constant, 0.08206 L-atm/mole KL, and T=temperature in K (273 + C). So (5.67atm)(99.39L)=n(0.08206 L-atm/mol.K)(328.94K), solve for n, the number of moles, n=20.9 moles.
Explanation: