Answer;
it combines with the water and H in the atmosphere and creates sulfuric acid thus making the rain acidic
Explanation:
Answer:When you add baking powder to water or milk, the alkali and the acidreact with one another and produce carbon dioxide – the bubbles. Sodium bicarbonate is a weak base which is commonly known as baking soda and used in cooking. It weakly ionizes in water: NaHCO3 + H2O → H2CO3 + (OH-) + (Na+). u need to stop deleteing my answers ughh
Explanation:
The ratio of effusion rates for the lightest gas H₂ to the heaviest known gas UF₆ is 13.21 to 1
<h3>What is effusion?</h3>
Effusion is a process by which a gas escapes from its container through a tiny hole into evacuated space.
Rate of effusion ∝ 1/√Ц, (where Ц is molar mass)
Rate H₂ = 1/√ЦH₂
Rate UF₆ = 1/√ЦUF₆
Therefore, Rate H₂/ Rate UF₆ = √ЦH₂/√ЦUF₆
ЦH₂= 2.016 g/mol
ЦUF₆= 352.04 g/mol
Rate H₂ / Rate UF₆ = √352.04/√2.016 = 18.76/1.42
Rate H₂ / Rate UF₆ = 13.21
Therefore, H₂ is lower mass than UF₆. Thus H₂ gas will effuse 13 times more faster than UF₆ because the most probable speed of H₂ molecule is higher; therefore, more molecules escapes per unit time.
learn more about effusion rate: brainly.com/question/28371955
#SPJ1
Answer:
Bin 1 points to a carbon bonded to a double bonded carbon and single bonded to two hydrogens. --- trigonal planar, tetrahedral
Bin 2 points to a carbon double bonded to a carbon and single bonded to a carbon and one hydrogen.------- trigonal planar, tetrahedral
Bin 3 is a carbon single bonded to two carbons and single bonded to two hydrogens. ----- tetrahedral, tetrahedral
Bin 4 is the same as bin 3.--------tetrahedral, tetrahedral
Bin 5 is a carbon triple bonded to a carbon and single bonded to a carbon.---- linear, tetrahedral
Bin 6 is triple bonded to a carbon and single bonded to a hydrogen.---linear, tetrahedral
Explanation:
A single C-C or C-H bond is in a tetrahedral geometry, the carbon atom is bonded to four species with a bond angle of 109°.
A C=C bond is trigonal planar with a bond angle of 120°.
Lastly, a C≡C bond has a linear geometry with a bond angle of 180° between the atoms of the bond.