Answer is: the % ionization of hypochlorous acid is 0.14.
Balanced chemical
reaction (dissociation) of an aqueous solution of hypochlorous acid:
HClO(aq) ⇄ H⁺(aq) + ClO⁻(aq).
Ka = [H⁺] · [ClO⁻] / [HClO].
[H⁺] is equilibrium concentration of hydrogen cations or protons.
[ClO⁻] is equilibrium concentration of hypochlorite anions.
[HClO]
is equilibrium concentration of hypochlorous acid.
Ka is the acid
dissociation constant.
Ka(HClO) = 3.0·10⁻⁸.
c(HClO) = 0.015 M.
Ka(HClO) = α² · c(HClO).
α = √(3.0·10⁻⁸ ÷ 0.015).
α = 0.0014 · 100% = 0.14%.
Answer:
At the bottom
Explanation:
-Destruction of aquatic flora and fauna
-Economic downturns
-serious health problems
And more!! We need to beware of our actions
Answer:
The correct option is A
Explanation:
Some amino acids, called glucogenic amino acids, when catabolized convert there carbon backbones to tricarboxylic acid (TCA) cycle intermediates. These intermediates can be subsequently metabolized into carbon dioxide and water with the release of ATP or the formation of glucose (known as gluconeogenesis.
<u>All amino acids (with the exception of leucine and lysine) are glucogenic and can thus generate the carbon backbones required for gluconeogenesis</u>. Thus, the correct option is a.
Answer:
A)The characteristic frequency to look out for is 1720-1740 cm-1 (for C=O) for which will disappear in the end product but initially present in the reactant.
B)Characteristic frequency present in the infrared spectrum will be at a peak of 3300-3400 cm-1 which will be due to O-H stretch.
C)If the product is wet with water there will be no change in the infrared spectrum
Explanation:
The characteristic frequency to look out for is 1720-1740 cm-1 (for C=O) for which will disappear in the end product but initially present in the reactant.
Characteristic frequency present in the infrared spectrum will be at a peak of 3300-3400 cm-1 which will be due to O-H stretch.
If the product is wet with water there will be no change in the infrared spectrum