Answer: There are
molecules present in 6.71 moles of
.
Explanation:
Given: Moles of
= 6.71 mol
According to the mole concept, 1 mole of every substance contains
molecules.
Therefore, molecules present in 6.71 moles are calculated as follows.

Thus, we can conclude that there are
molecules present in 6.71 moles of
.
Answer:
1. Mg (s) + 2Na+(aq) → 2Na(s) + Mg²⁺(aq)
2. 2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)
Explanation:
The net ionic equation of a reaction express only the chemical species that are involved in the reaction:
1. Mg (s) + Na2CrO4 (aq) → 2Na + MgCrO4(aq)
The ionic equation:
Mg (s) + 2Na+(aq) + CrO4²⁻ (aq) → 2Na + Mg²⁺ + CrO4²⁻(aq)
Subtracting the ions that don't change:
<h3>Mg (s) + 2Na+(aq) → 2Na + Mg²⁺</h3>
2. 2K(s) + Cd(NO3)2(aq) → 2KNO3(aq) + Cd(s)
The ionic equation:
2K(s) + Cd²⁺(aq) + 2NO3⁻(aq) → 2K⁺(aq) + 2NO3⁻(aq) + Cd(s)
Subtracting the ions that don't change:
<h3>2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)</h3>
Answer: Option (D) is the correct answer.
Explanation:
Vapor pressure is defined as the pressure exerted by the vapors which are present on the surface of a liquid.
For example, vapor pressure of water at room temperature is 0.0313 atm.
On the other hand, the temperature at which the vapor pressure of a liquid equals atmospheric pressure is known as boiling point.
For example, boiling point of water at room temperature is
.
Thus, we can conclude that vapor pressure can be described as the pressure exerted by a gas above the surface of its liquid.
Any element in group 18 has eight valence electrons (except for helium, which has a total of just two electrons). Examples include neon (Ne), argon (Ar), and krypton (Kr). Oxygen, like all the other elements in group 16, has six valence electrons.